114,284 research outputs found

    An agent system to support student teams working online

    Get PDF
    Online learning is now a reality, with distributed learning and blended learning becoming more widely used in Higher Education. Novel ways in which undergraduate and postgraduate learning material can be presented are being developed, and methods for helping students to learn online are needed, especially if we require them to collaborate with each other on learning activities. Agents to provide a supporting role for students have evolved from Artificial Intelligence research, and their strength lies in their ease of operation over networks as well as their ability to act in response to stimuli. In this paper an application of a software agent is described, aimed at supporting students working on team projects in the online learning environment. Online teamwork is problematical for a number of reasons, such as getting acquainted with team members, finding out about other team members’ abilities, agreeing who should do which tasks, communications between team members and keeping up to date with progress that has been made on the project. Software agents have the ability to monitor progress and to offer advice by operating in the background, acting autonomously when the need arises. An agent prototype has been developed in Prolog to perform a limited set of functions to support students. Team projects have a planning, doing and completing stage, all of which require them to have some sort of agent support. This agent at present supports part of the planning stage, by prompting the students to input their likes, dislikes and abilities for a selection of task areas defined for the project. The agent then allocates the various tasks to the students according to predetermined rules. The results of a trial carried out using teams working on projects, on campus, indicate that students like the idea of using this agent to help with allocating tasks. They also agreed that agent support of this type would probably be helpful to both students working on team projects with face to face contact, as well as for teams working solely online. Work is ongoing to add more functionality to the agent and to evaluate the agent more widely

    Student teamwork: developing virtual support for team projects

    Get PDF
    In the 21st century team working increasingly requires online cooperative skills as well as more traditional skills associated with face to face team working. Virtual team working differs from face to face team working in a number of respects, such as interpreting the alternatives to visual cues, adapting to synchronous communication, developing trust and cohesion and cultural interpretations. However, co-located student teams working within higher education can only simulate team working as it might be experienced in organisations today. For example, students can learn from their mistakes in a non-threatening environment, colleagues tend to be established friends and assessing teamwork encourages behaviour such as “free-riding”. Using a prototyping approach, which involves students and tutors, a system has been designed to support learners engaged in team working. This system helps students to achieve to their full potential and appreciate issues surrounding virtual teamwork. The Guardian Agent system enables teams to allocate project tasks and agree ground rules for the team according to individuals’ preferences. Results from four cycles of its use are presented, together with modifications arising from iterations of testing. The results show that students find the system useful in preparing for team working, and have encouraged further development of the system

    Initiating e-learning by stealth, participation and consultation in a late majority institution

    Get PDF
    The extent to which opportunities afforded by e-learning are embraced by an institution can depend in large measure on whether it is perceived as enabling and transformative or as a major and disruptive distraction. Most case studies focus on the former. This paper describes how e-learning was introduced into the latter environment. The sensitivity of competing pressures in a research intensive university substantially influenced the manner in which e-learning was promoted. This paper tells that story, from initial stealth to eventual university acknowledgement of the relevance of e-learning specifically to its own context

    Informatics Research Institute (IRIS) July 2002 newsletter

    Get PDF

    Collaborative trails in e-learning environments

    Get PDF
    This deliverable focuses on collaboration within groups of learners, and hence collaborative trails. We begin by reviewing the theoretical background to collaborative learning and looking at the kinds of support that computers can give to groups of learners working collaboratively, and then look more deeply at some of the issues in designing environments to support collaborative learning trails and at tools and techniques, including collaborative filtering, that can be used for analysing collaborative trails. We then review the state-of-the-art in supporting collaborative learning in three different areas – experimental academic systems, systems using mobile technology (which are also generally academic), and commercially available systems. The final part of the deliverable presents three scenarios that show where technology that supports groups working collaboratively and producing collaborative trails may be heading in the near future

    A tool-mediated cognitive apprenticeship approach for a computer engineering course

    Get PDF
    Teaching database engineers involves a variety of learning activities. A strong focus is on practical problems that go beyond the acquisition of knowledge. Skills and experience are equally important. We propose a virtual apprenticeship model for the knowledge- and skillsoriented Web-based education of database students. We adapt the classical cognitive apprenticeship theory to the Web context utilising scaffolding and activity theory. The choice of educational media and the forms of student interaction with the media are central success criteria

    Collaboration in the Semantic Grid: a Basis for e-Learning

    Get PDF
    The CoAKTinG project aims to advance the state of the art in collaborative mediated spaces for the Semantic Grid. This paper presents an overview of the hypertext and knowledge based tools which have been deployed to augment existing collaborative environments, and the ontology which is used to exchange structure, promote enhanced process tracking, and aid navigation of resources before, after, and while a collaboration occurs. While the primary focus of the project has been supporting e-Science, this paper also explores the similarities and application of CoAKTinG technologies as part of a human-centred design approach to e-Learning

    Planning for Success in Introducing and Embedding Technology to Enhance Learning

    Get PDF
    The authors reflect on the outcomes of recent change management projects for introducing technology into Higher Education in the UK and discuss key aspects which have led to success in the increasing use and subsequent embedding of learning technologies in the classroom. They focus on three areas where it is suggested that institutions need to ‘get it right’ in terms of justifying the expensive introduction of technology into the learning environment: the building and maintaining of the technical infrastructure; the provision of appropriate initial and continuing user support, which includes relating the use of technology to pedagogy; and the management of the impact of change on those who are faced with adapting to different ways of learning and teaching. These are mapped to a set of critical success factors by the authors. The paper investigate these firstly, via a case-study within a technology-focussed university, where its commitment to the enhancement of the student experience through using technology to support assessment and feedback mechanisms has increased. The authors explore how academics were encouraged to become further engaged within the process. Consequently, the use of technology in the classroom was no longer seen as being the preserve of a group of ‘enthusiasts’ or ‘early adopters’ but was perceived to be relevant to a wider user group. A further case-study shows how the critical success factors were applied to develop a flexible learning module within a more traditional teaching environment. This paper explores the importance of balancing underlying pedagogical approaches to the introduction of new technologies. It is proposed that while technology can be an excellent tool it should not drive the pedagogy. The aim finally is to ensure that throughout and following a period of change both academics and students can benefit from the appropriate use of technology to enhance learnin
    • 

    corecore