1,181 research outputs found

    Coding with Scrambling, Concatenation, and HARQ for the AWGN Wire-Tap Channel: A Security Gap Analysis

    Full text link
    This study examines the use of nonsystematic channel codes to obtain secure transmissions over the additive white Gaussian noise (AWGN) wire-tap channel. Unlike the previous approaches, we propose to implement nonsystematic coded transmission by scrambling the information bits, and characterize the bit error rate of scrambled transmissions through theoretical arguments and numerical simulations. We have focused on some examples of Bose-Chaudhuri-Hocquenghem (BCH) and low-density parity-check (LDPC) codes to estimate the security gap, which we have used as a measure of physical layer security, in addition to the bit error rate. Based on a number of numerical examples, we found that such a transmission technique can outperform alternative solutions. In fact, when an eavesdropper (Eve) has a worse channel than the authorized user (Bob), the security gap required to reach a given level of security is very small. The amount of degradation of Eve's channel with respect to Bob's that is needed to achieve sufficient security can be further reduced by implementing scrambling and descrambling operations on blocks of frames, rather than on single frames. While Eve's channel has a quality equal to or better than that of Bob's channel, we have shown that the use of a hybrid automatic repeat-request (HARQ) protocol with authentication still allows achieving a sufficient level of security. Finally, the secrecy performance of some practical schemes has also been measured in terms of the equivocation rate about the message at the eavesdropper and compared with that of ideal codes.Comment: 29 pages, 10 figure

    A Study on the Impact of Locality in the Decoding of Binary Cyclic Codes

    Full text link
    In this paper, we study the impact of locality on the decoding of binary cyclic codes under two approaches, namely ordered statistics decoding (OSD) and trellis decoding. Given a binary cyclic code having locality or availability, we suitably modify the OSD to obtain gains in terms of the Signal-To-Noise ratio, for a given reliability and essentially the same level of decoder complexity. With regard to trellis decoding, we show that careful introduction of locality results in the creation of cyclic subcodes having lower maximum state complexity. We also present a simple upper-bounding technique on the state complexity profile, based on the zeros of the code. Finally, it is shown how the decoding speed can be significantly increased in the presence of locality, in the moderate-to-high SNR regime, by making use of a quick-look decoder that often returns the ML codeword.Comment: Extended version of a paper submitted to ISIT 201

    Low Complexity Decoding for Higher Order Punctured Trellis-Coded Modulation Over Intersymbol Interference Channels

    Full text link
    Trellis-coded modulation (TCM) is a power and bandwidth efficient digital transmission scheme which offers very low structural delay of the data stream. Classical TCM uses a signal constellation of twice the cardinality compared to an uncoded transmission with one bit of redundancy per PAM symbol, i.e., application of codes with rates n1n\frac{n-1}{n} when 2n2^{n} denotes the cardinality of the signal constellation. Recently published work allows rate adjustment for TCM by means of puncturing the convolutional code (CC) on which a TCM scheme is based on. In this paper it is shown how punctured TCM-signals transmitted over intersymbol interference (ISI) channels can favorably be decoded. Significant complexity reductions at only minor performance loss can be achieved by means of reduced state sequence estimation.Comment: 4 pages, 5 figures, 3 algorithms, accepted and published at 6th International Symposium on Communications, Control, and Signal Processing (ISCCSP 2014

    Multi-level Turbo Decoding Assisted Soft Combining Aided Hybrid ARQ

    No full text
    Hybrid Automatic Repeat reQuest (ARQ) plays an essential role in error control. Combining the incorrectly received packet replicas in hybrid ARQ has been shown to reduce the resultant error probability, while improving the achievable throughput. Hence, in this contribution, multi-level turbo codes have been amalgamated both with hybrid ARQ and efficient soft combining techniques for taking into account the Log- Likelihood Ratios (LLRs) of retransmitted packet replicas. In this paper, we present a soft combining aided hybrid ARQ scheme based on multi-level turbo codes, which avoid the capacity loss of the twin-level turbo codes that are typically employed in hybrid ARQ schemes. More specifically, the proposed receiver dynamically appends an additional parallel concatenated Bahl, Cocke, Jelinek and Raviv (BCJR) algorithm based decoder in order to fully exploit each retransmission, thereby forming a multi-level turbo decoder. Therefore, all the extrinsic information acquired during the previous BCJR operations will be used as a priori information by the additional BCJR decoders, whilst their soft output iteratively enhances the a posteriori information generated by the previous decoding stages. We also present link- level Packet Loss Ratio (PLR) and throughput results, which demonstrate that our scheme outperforms some of the previously proposed benchmarks

    Increasing Physical Layer Security through Scrambled Codes and ARQ

    Full text link
    We develop the proposal of non-systematic channel codes on the AWGN wire-tap channel. Such coding technique, based on scrambling, achieves high transmission security with a small degradation of the eavesdropper's channel with respect to the legitimate receiver's channel. In this paper, we show that, by implementing scrambling and descrambling on blocks of concatenated frames, rather than on single frames, the channel degradation needed is further reduced. The usage of concatenated scrambling allows to achieve security also when both receivers experience the same channel quality. However, in this case, the introduction of an ARQ protocol with authentication is needed.Comment: 5 pages, 4 figures; Proc. IEEE ICC 2011, Kyoto, Japan, 5-9 June 201

    Self-concatenated code design and its application in power-efficient cooperative communications

    No full text
    In this tutorial, we have focused on the design of binary self-concatenated coding schemes with the help of EXtrinsic Information Transfer (EXIT) charts and Union bound analysis. The design methodology of future iteratively decoded self-concatenated aided cooperative communication schemes is presented. In doing so, we will identify the most important milestones in the area of channel coding, concatenated coding schemes and cooperative communication systems till date and suggest future research directions

    The Error-Pattern-Correcting Turbo Equalizer

    Full text link
    The error-pattern correcting code (EPCC) is incorporated in the design of a turbo equalizer (TE) with aim to correct dominant error events of the inter-symbol interference (ISI) channel at the output of its matching Viterbi detector. By targeting the low Hamming-weight interleaved errors of the outer convolutional code, which are responsible for low Euclidean-weight errors in the Viterbi trellis, the turbo equalizer with an error-pattern correcting code (TE-EPCC) exhibits a much lower bit-error rate (BER) floor compared to the conventional non-precoded TE, especially for high rate applications. A maximum-likelihood upper bound is developed on the BER floor of the TE-EPCC for a generalized two-tap ISI channel, in order to study TE-EPCC's signal-to-noise ratio (SNR) gain for various channel conditions and design parameters. In addition, the SNR gain of the TE-EPCC relative to an existing precoded TE is compared to demonstrate the present TE's superiority for short interleaver lengths and high coding rates.Comment: This work has been submitted to the special issue of the IEEE Transactions on Information Theory titled: "Facets of Coding Theory: from Algorithms to Networks". This work was supported in part by the NSF Theoretical Foundation Grant 0728676

    Advanced channel coding for space mission telecommand links

    Full text link
    We investigate and compare different options for updating the error correcting code currently used in space mission telecommand links. Taking as a reference the solutions recently emerged as the most promising ones, based on Low-Density Parity-Check codes, we explore the behavior of alternative schemes, based on parallel concatenated turbo codes and soft-decision decoded BCH codes. Our analysis shows that these further options can offer similar or even better performance.Comment: 5 pages, 7 figures, presented at IEEE VTC 2013 Fall, Las Vegas, USA, Sep. 2013 Proc. IEEE Vehicular Technology Conference (VTC 2013 Fall), ISBN 978-1-6185-9, Las Vegas, USA, Sep. 201

    Near-capacity iterative decoding of binary self-concatenated codes using soft decision demapping and 3-D EXIT charts

    No full text
    In this paper 3-D Extrinsic Information Transfer (EXIT) charts are used to design binary Self-Concatenated Convolutional Codes employing Iterative Decoding (SECCC-ID), exchanging extrinsic information with the soft-decision demapper to approach the channel capacity. Recursive Systematic Convolutional (RSC) codes are selected as constituent codes, an interleaver is used for randomising the extrinsic information exchange of the constituent codes, while a puncturer helps to increase the achievable bandwidth efficiency. The convergence behaviour of the decoder is analysed with the aid of bit-based 3-D EXIT charts, for accurately calculating the operating EbN0 threshold, especially when SP based soft demapper is employed. Finally, we propose an attractive system configuration, which is capable of operating within about 1 dB from the channel capacity
    corecore