3 research outputs found

    Iterative Soft-Input Soft-Output Decoding with Ordered Reliability Bits GRAND

    Full text link
    Guessing Random Additive Noise Decoding (GRAND) is a universal decoding algorithm that can be used to perform maximum likelihood decoding. It attempts to find the errors introduced by the channel by generating a sequence of possible error vectors in order of likelihood of occurrence and applying them to the received vector. Ordered reliability bits GRAND (ORBGRAND) integrates soft information received from the channel to refine the error vector sequence. In this work, ORBGRAND is modified to produce a soft output, to enable its use as an iterative soft-input soft-output (SISO) decoder. Three techniques specific to iterative GRAND-based decoding are then proposed to improve the error-correction performance and decrease computational complexity and latency. Using the OFEC code as a case study, the proposed techniques are evaluated, yielding substantial performance gain and astounding complexity reduction of 48\% to 85\% with respect to the baseline SISO ORBGRAND.Comment: Submitted to Globecom 202

    Improved Decoding of Staircase Codes: The Soft-aided Bit-marking (SABM) Algorithm

    Get PDF
    Staircase codes (SCCs) are typically decoded using iterative bounded-distance decoding (BDD) and hard decisions. In this paper, a novel decoding algorithm is proposed, which partially uses soft information from the channel. The proposed algorithm is based on marking certain number of highly reliable and highly unreliable bits. These marked bits are used to improve the miscorrection-detection capability of the SCC decoder and the error-correcting capability of BDD. For SCCs with 22-error-correcting Bose-Chaudhuri-Hocquenghem component codes, our algorithm improves upon standard SCC decoding by up to 0.300.30~dB at a bit-error rate (BER) of 10−710^{-7}. The proposed algorithm is shown to achieve almost half of the gain achievable by an idealized decoder with this structure. A complexity analysis based on the number of additional calls to the component BDD decoder shows that the relative complexity increase is only around 4%4\% at a BER of 10−410^{-4}. This additional complexity is shown to decrease as the channel quality improves. Our algorithm is also extended (with minor modifications) to product codes. The simulation results show that in this case, the algorithm offers gains of up to 0.440.44~dB at a BER of 10−810^{-8}.Comment: 10 pages, 12 figure

    A Soft-Aided Staircase Decoder Using Three-Level Channel Reliabilities

    Full text link
    The soft-aided bit-marking (SABM) algorithm is based on the idea of marking bits as highly reliable bits (HRBs), highly unreliable bits (HUBs), and uncertain bits to improve the performance of hard-decision (HD) decoders. The HRBs and HUBs are used to assist the HD decoders to prevent miscorrections and to decode those originally uncorrectable cases via bit flipping (BF), respectively. In this paper, an improved SABM algorithm (called iSABM) is proposed for staircase codes (SCCs). Similar to the SABM, iSABM marks bits with the help of channel reliabilities, i.e., using the absolute values of the log-likelihood ratios. The improvements offered by iSABM include: (i) HUBs being classified using a reliability threshold, (ii) BF randomly selecting HUBs, and (iii) soft-aided decoding over multiple SCC blocks. The decoding complexity of iSABM is comparable of that of SABM. This is due to the fact that on the one hand no sorting is required (lower complexity) because of the use of a threshold for HUBs, while on the other hand multiple SCC blocks use soft information (higher complexity). Additional gains of up to 0.53 dB with respect to SABM and 0.91 dB with respect to standard SCC decoding at a bit error rate of 10−610^{-6} are reported. Furthermore, it is shown that using 1-bit reliability marking, i.e., only having HRBs and HUBs, only causes a gain penalty of up to 0.25 dB with a significantly reduced memory requirement
    corecore