3 research outputs found

    Soft fluidic rotary actuator with improved actuation properties

    Get PDF
    The constantly increasing amount of machines operating in the vicinity of humans makes it necessary to rethink the design approach for such machines to ensure that they are safe when interacting with humans. Traditional mechanisms are rigid and heavy and as such considered unsuitable, even dangerous when a controlled physical contact with humans is desired. A huge improvement in terms of safe human-robot interaction has been achieved by a radically new approach to robotics - soft material robotics. These new robots are made of compliant materials that render them safe when compared to the conventional rigid-link robots. This undeniable advantage of compliance and softness is paired with a number of drawbacks. One of them is that a complex and sophisticated controller is required to move a soft robot into the desired positions or along a desired trajectory, especially with external forces being present. In this paper we propose an improved soft fluidic rotary actuator composed of silicone rubber and fiber-based reinforcement. The actuator is cheap and easily manufactured providing near linear actuation properties when compared to pneumatic actuators presented elsewhere. The paper presents the actuator design, manufacturing process and a mathematical model of the actuator behavior as well as an experimental validation of the model. Four different actuator types are compared including a square-shaped and three differently reinforced cylindrical actuators

    Hydraulically-actuated compliant revolute joint for medical robotic systems based on multimaterial additive manufacturing

    Get PDF
    IEEE International Conference on Robotics and Automation (ICRA), Montréal, Canada, janvier 2019 Research team : AV
    corecore