609 research outputs found

    Social-Aware Multicast in Disruption-Tolerant Networks

    Full text link

    Mobility-based routing algorithm in delay tolerant networks

    Get PDF

    Opportunistic Networks: Present Scenario- A Mirror Review

    Get PDF
    Opportunistic Network is form of Delay Tolerant Network (DTN) and regarded as extension to Mobile Ad Hoc Network. OPPNETS are designed to operate especially in those environments which are surrounded by various issues like- High Error Rate, Intermittent Connectivity, High Delay and no defined route between source to destination node. OPPNETS works on the principle of “Store-and-Forward” mechanism as intermediate nodes perform the task of routing from node to node. The intermediate nodes store the messages in their memory until the suitable node is not located in communication range to transfer the message to the destination. OPPNETs suffer from various issues like High Delay, Energy Efficiency of Nodes, Security, High Error Rate and High Latency. The aim of this research paper is to overview various routing protocols available till date for OPPNETs and classify the protocols in terms of their performance. The paper also gives quick review of various Mobility Models and Simulation tools available for OPPNETs simulation

    A Novel IDS Security Scheme for Multicast Communication in DTN

    Get PDF
    This DTN routing should naturally support unicast and multicast routing strategies. A network node can register itself to any receiver group by setting the corresponding destination. In this research we proposed a new security algorithm with multi cast routing against malicious packet dropping attack in DTN. The proposed security method of finding attacker is based on the link detection method for data forwarding in between sender to receiver. The packet dropping on link through node is detected and prevented by IDS security system. This method not only identified the black hole and grey hole but also prevent from routing misbehavior of malicious nodes. The attacker is identified by data dropping of packets in excessive quantity and their prevention is possible by selecting the next possible route where attacker does not exist in connected link between senders to receivers. The intermediate nodes are identified the attacker through confirm positive reply of malicious node or nodes in dynamic network. The proposed secure IDS (Intrusion Detection and prevention) is securing the DTN and improves the network performance after blocking black hole and grey hole in network. The network performance in presence of attack and secure IDS is measures through performance metrics like throughput, routing packets flooding and proposed secures routing is improves data receiving and minimizes dropping data network

    Application Platforms, Routing Algorithms and Mobility Behavior in Mobile Disruption-Tolerant Networks

    Get PDF
    Mobile disruption-tolerant networks (DTNs), experience frequent and long duration partitions due to the low density of mobile nodes. In these networks, traditional networking models relying on end-to-end communication cease to work. The topological characteristics of mobile DTNs impose unique challenges for the design and validation of routing protocols and applications. We investigate challenges of mobile DTNs from three different viewpoints: the application layer, a routing perspective, and by studying mobility patterns. In the application layer, we have built 7DS (7th Degree of Separation) as a modular platform to develop mobile disruption-tolerant applications. 7DS offers a class of disruption-tolerant applications to exchange data with other mobile users in the mobile DTN or with the global Internet. In the routing layer, we have designed and implemented PEEP as an interest-aware and energy efficient routing protocol which automatically extracts individual interests of mobile users and estimates the global popularity of data items throughout the network. PEEP considers mobile users' interests and global popularity of data items in its routing decisions to route data toward the community of mobile users who are interested in that data content. Mobility of mobile users impacts the conditions in which routing protocols for mobile DTNs must operate and types of applications that could be provided for mobile networks in general. The current synthetic mobility models do not reflect real-world mobile users' behavior. Trace-based mobility models, also, are based on traces that either represent a specific population of mobile users or do not have enough granularities in representing mobility of mobile users for example cell tower traces. We use Sense Networks' GPS traces that are being collected by monitoring a broad spectrum of mobile users. Using these traces, we employ a Markovian approach to extract inherent patterns in human mobility. We design and implement a new routing algorithm for mobile DTNs based on our Markovian analysis of the human mobility. We explore how the knowledge of the mobility improves the performance of our Markov based routing algorithm. We show that that our Markov based routing algorithm increases the rate of data delivery to popular destinations with consuming less energy than legacy algorithms
    corecore