14 research outputs found

    Explainable artificial intelligence through graph theory by generalized social network analysis-based classifier

    Get PDF
    We propose a new type of supervised visual machine learning classifier, GSNAc, based on graph theory and social network analysis techniques. In a previous study, we employed social network analysis techniques and introduced a novel classification model (called Social Network Analysis-based Classifier-SNAc) which efficiently works with time-series numerical datasets. In this study, we have extended SNAc to work with any type of tabular data by showing its classification efficiency on a broader collection of datasets that may contain numerical and categorical features. This version of GSNAc simply works by transforming traditional tabular data into a network where samples of the tabular dataset are represented as nodes and similarities between the samples are reflected as edges connecting the corresponding nodes. The raw network graph is further simplified and enriched by its edge space to extract a visualizable 'graph classifier model-GCM'. The concept of the GSNAc classification model relies on the study of node similarities over network graphs. In the prediction step, the GSNAc model maps test nodes into GCM, and evaluates their average similarity to classes by employing vectorial and topological metrics. The novel side of this research lies in transforming multidimensional data into a 2D visualizable domain. This is realized by converting a conventional dataset into a network of 'samples' and predicting classes after a careful and detailed network analysis. We exhibit the classification performance of GSNAc as an effective classifier by comparing it with several well-established machine learning classifiers using some popular benchmark datasets. GSNAc has demonstrated superior or comparable performance compared to other classifiers. Additionally, it introduces a visually comprehensible process for the benefit of end-users. As a result, the spin-off contribution of GSNAc lies in the interpretability of the prediction task since the process is human-comprehensible; and it is highly visual

    The role of machine learning in developing non-magnetic resonance imaging based biomarkers for multiple sclerosis: a systematic review

    Get PDF
    Background Multiple sclerosis (MS) is a neurological condition whose symptoms, severity, and progression over time vary enormously among individuals. Ideally, each person living with MS should be provided with an accurate prognosis at the time of diagnosis, precision in initial and subsequent treatment decisions, and improved timeliness in detecting the need to reassess treatment regimens. To manage these three components, discovering an accurate, objective measure of overall disease severity is essential. Machine learning (ML) algorithms can contribute to finding such a clinically useful biomarker of MS through their ability to search and analyze datasets about potential biomarkers at scale. Our aim was to conduct a systematic review to determine how, and in what way, ML has been applied to the study of MS biomarkers on data from sources other than magnetic resonance imaging. Methods Systematic searches through eight databases were conducted for literature published in 2014-2020 on MS and specified ML algorithms. Results Of the 1, 052 returned papers, 66 met the inclusion criteria. All included papers addressed developing classifiers for MS identification or measuring its progression, typically, using hold-out evaluation on subsets of fewer than 200 participants with MS. These classifiers focused on biomarkers of MS, ranging from those derived from omics and phenotypical data (34.5% clinical, 33.3% biological, 23.0% physiological, and 9.2% drug response). Algorithmic choices were dependent on both the amount of data available for supervised ML (91.5%; 49.2% classification and 42.3% regression) and the requirement to be able to justify the resulting decision-making principles in healthcare settings. Therefore, algorithms based on decision trees and support vector machines were commonly used, and the maximum average performance of 89.9% AUC was found in random forests comparing with other ML algorithms. Conclusions ML is applicable to determining how candidate biomarkers perform in the assessment of disease severity. However, applying ML research to develop decision aids to help clinicians optimize treatment strategies and analyze treatment responses in individual patients calls for creating appropriate data resources and shared experimental protocols. They should target proceeding from segregated classification of signals or natural language to both holistic analyses across data modalities and clinically-meaningful differentiation of disease.</p

    Tätigkeitsbericht 2014-2016

    Get PDF

    Tätigkeitsbericht 2011-2013

    Get PDF

    Evaluation of PD-L1 expression in various formalin-fixed paraffin embedded tumour tissue samples using SP263, SP142 and QR1 antibody clones

    Get PDF
    Background & objectives: Cancer cells can avoid immune destruction through the inhibitory ligand PD-L1. PD-1 is a surface cell receptor, part of the immunoglobulin family. Its ligand PD-L1 is expressed by tumour cells and stromal tumour infltrating lymphocytes (TIL). Methods: Forty-four cancer cases were included in this study (24 triple-negative breast cancers (TNBC), 10 non-small cell lung cancer (NSCLC) and 10 malignant melanoma cases). Three clones of monoclonal primary antibodies were compared: QR1 (Quartett), SP 142 and SP263 (Ventana). For visualization, ultraView Universal DAB Detection Kit from Ventana was used on an automated platform for immunohistochemical staining Ventana BenchMark GX. Results: Comparing the sensitivity of two different clones on same tissue samples from TNBC, we found that the QR1 clone gave higher percentage of positive cells than clone SP142, but there was no statistically significant difference. Comparing the sensitivity of two different clones on same tissue samples from malignant melanoma, the SP263 clone gave higher percentage of positive cells than the QR1 clone, but again the difference was not statistically significant. Comparing the sensitivity of two different clones on same tissue samples from NSCLC, we found higher percentage of positive cells using the QR1 clone in comparison with the SP142 clone, but once again, the difference was not statistically significant. Conclusion: The three different antibody clones from two manufacturers Ventana and Quartett, gave comparable results with no statistically significant difference in staining intensity/ percentage of positive tumour and/or immune cells. Therefore, different PD-L1 clones from different manufacturers can potentially be used to evaluate the PD- L1 status in different tumour tissues. Due to the serious implications of the PD-L1 analysis in further treatment decisions for cancer patients, every antibody clone, staining protocol and evaluation process should be carefully and meticulously validated

    Research in the Archival Multiverse

    Get PDF
    Over the past 15 years, the field of archival studies around the world has experienced unprecedented growth within the academy and within the profession, and archival studies graduate education programs today have among the highest enrolments in any information field. During the same period, there has also been unparalleled expansion and innovation in the diversity of methods and theories being applied in archival scholarship. Global in scope, Research in the Archival Multiverse compiles critical and reflective essays across a wide range of emerging research areas and interests in archival studies; it aims to provide current and future archival academics with a text addressing possible methods and theoretical frameworks that have been and might be used in archival scholarship and research

    Research in the Archival Multiverse

    Get PDF
    Over the past 15 years, the field of archival studies around the world has experienced unprecedented growth within the academy and within the profession, and archival studies graduate education programs today have among the highest enrolments in any information field. During the same period, there has also been unparalleled expansion and innovation in the diversity of methods and theories being applied in archival scholarship. Global in scope, Research in the Archival Multiverse compiles critical and reflective essays across a wide range of emerging research areas and interests in archival studies; it aims to provide current and future archival academics with a text addressing possible methods and theoretical frameworks that have been and might be used in archival scholarship and research

    Infective/inflammatory disorders

    Get PDF

    The radiological investigation of musculoskeletal tumours : chairperson's introduction

    No full text
    corecore