22,162 research outputs found

    Crowdsourcing Cybersecurity: Cyber Attack Detection using Social Media

    Full text link
    Social media is often viewed as a sensor into various societal events such as disease outbreaks, protests, and elections. We describe the use of social media as a crowdsourced sensor to gain insight into ongoing cyber-attacks. Our approach detects a broad range of cyber-attacks (e.g., distributed denial of service (DDOS) attacks, data breaches, and account hijacking) in an unsupervised manner using just a limited fixed set of seed event triggers. A new query expansion strategy based on convolutional kernels and dependency parses helps model reporting structure and aids in identifying key event characteristics. Through a large-scale analysis over Twitter, we demonstrate that our approach consistently identifies and encodes events, outperforming existing methods.Comment: 13 single column pages, 5 figures, submitted to KDD 201

    Why Do Cascade Sizes Follow a Power-Law?

    Full text link
    We introduce random directed acyclic graph and use it to model the information diffusion network. Subsequently, we analyze the cascade generation model (CGM) introduced by Leskovec et al. [19]. Until now only empirical studies of this model were done. In this paper, we present the first theoretical proof that the sizes of cascades generated by the CGM follow the power-law distribution, which is consistent with multiple empirical analysis of the large social networks. We compared the assumptions of our model with the Twitter social network and tested the goodness of approximation.Comment: 8 pages, 7 figures, accepted to WWW 201

    Prediction of Emerging Technologies Based on Analysis of the U.S. Patent Citation Network

    Full text link
    The network of patents connected by citations is an evolving graph, which provides a representation of the innovation process. A patent citing another implies that the cited patent reflects a piece of previously existing knowledge that the citing patent builds upon. A methodology presented here (i) identifies actual clusters of patents: i.e. technological branches, and (ii) gives predictions about the temporal changes of the structure of the clusters. A predictor, called the {citation vector}, is defined for characterizing technological development to show how a patent cited by other patents belongs to various industrial fields. The clustering technique adopted is able to detect the new emerging recombinations, and predicts emerging new technology clusters. The predictive ability of our new method is illustrated on the example of USPTO subcategory 11, Agriculture, Food, Textiles. A cluster of patents is determined based on citation data up to 1991, which shows significant overlap of the class 442 formed at the beginning of 1997. These new tools of predictive analytics could support policy decision making processes in science and technology, and help formulate recommendations for action
    • …
    corecore