54,193 research outputs found
Thermal design of the space shuttle external tank
The shuttle external tank thermal design presents many challenges in meeting the stringent requirements established by the structures, main propulsion systems, and Orbiter elements. The selected thermal protection design had to meet these requirements, and ease of application, suitability for mass production considering low weight, cost, and high reliability. This development led to a spray-on-foam (SOFI) which covers the entire tank. The need and design for a SOFI material with a dual role of cryogenic insulation and ablator, and the development of the SOFI over SLA concept for high heating areas are discussed. Further issuses of minimum surface ice/frost, no debris, and the development of the TPS spray process considering the required quality and process control are examined
Complementarity of PALM and SOFI for super-resolution live cell imaging of focal adhesions
Live cell imaging of focal adhesions requires a sufficiently high temporal
resolution, which remains a challenging task for super-resolution microscopy.
We have addressed this important issue by combining photo-activated
localization microscopy (PALM) with super-resolution optical fluctuation
imaging (SOFI). Using simulations and fixed cell focal adhesion images, we
investigated the complementarity between PALM and SOFI in terms of spatial and
temporal resolution. This PALM-SOFI framework was used to image focal adhesions
in living cells, while obtaining a temporal resolution below 10 s. We
visualized the dynamics of focal adhesions, and revealed local mean velocities
around 190 nm per minute. The complementarity of PALM and SOFI was assessed in
detail with a methodology that integrates a quantitative resolution and
signal-to-noise metric. This PALM and SOFI concept provides an enlarged
quantitative imaging framework, allowing unprecedented functional exploration
of focal adhesions through the estimation of molecular parameters such as the
fluorophore density and the photo-activation and photo-switching rates
Quantifying protein densities on cell membranes using super-resolution optical fluctuation imaging
Surface molecules, distributed in diverse patterns and clusters on cell
membranes, influence vital functions of living cells. It is therefore important
to understand their molecular surface organisation under different
physiological and pathological conditions. Here, we present a model-free,
quantitative method to determine the distribution of cell surface molecules
based on TIRF illumination and super-resolution optical fluctuation imaging
(SOFI). This SOFI-based approach is robust towards single emitter
multiple-blinking events, high labelling densities and high blinking rates. In
SOFI, the molecular density is not based on counting events, but results as an
intrinsic property due to the correlation of the intensity fluctuations. The
effectiveness and robustness of the method was validated using simulated data,
as well as experimental data investigating the impact of palmitoylation on CD4
protein nanoscale distribution in the plasma membrane of resting T cells.Comment: 9 pages, 3 figures plus Supplementary Informatio
A low-mass stellar companion of the planet host star HD75289
We report on the detection of a new low-mass stellar companion of HD75289, a
G0V star that harbors one known radial-velocity planet (Udry et al. 2000).
Comparing an image of 2MASS with an image we obtained with SofI at the ESO
3.58m NTT three years later, we detected a co-moving companion located
21.465+-0.023arcsecs (621+-10AU at 29pc) east of HD75289. A second SofI image
taken 10 months later confirmed the common proper motion of HD75289B with its
host star. The infrared spectrum and colors of the companion are consistent
with an M2 to M5 main-sequence star at the distance of HD75289. No further
(sub)stellar companion down to H = 19mag could be detected. With the SofI
detection limit we can rule out additional stellar companions beyond 140AU and
substellar companions with masses m > 0.050Msun from 400AU up to 2000AU.Comment: accepted in A&
Multiplane 3D superresolution optical fluctuation imaging
By switching fluorophores on and off in either a deterministic or a
stochastic manner, superresolution microscopy has enabled the imaging of
biological structures at resolutions well beyond the diffraction limit.
Superresolution optical fluctuation imaging (SOFI) provides an elegant way of
overcoming the diffraction limit in all three spatial dimensions by computing
higher-order cumulants of image sequences of blinking fluorophores acquired
with a conventional widefield microscope. So far, three-dimensional (3D) SOFI
has only been demonstrated by sequential imaging of multiple depth positions.
Here we introduce a versatile imaging scheme which allows for the simultaneous
acquisition of multiple focal planes. Using 3D cross-cumulants, we show that
the depth sampling can be increased. Consequently, the simultaneous acquisition
of multiple focal planes reduces the acquisition time and hence the
photo-bleaching of fluorescent markers. We demonstrate multiplane 3D SOFI by
imaging the mitochondria network in fixed C2C12 cells over a total volume of
without depth scanning.Comment: 7 pages, 3 figure
Inspection Of Spray On Foam Insulation (SOFI) Using and Microwave and Millimeter Wave Synthetic Aperture Focusing and Holography
The Space Shuttle Columbia's catastrophic failure is thought to have been caused by a dislodged piece of external tank spray on foam insulation (SOFI) striking the left wing of the orbiter causing significant damage to some of the reinforced carbon/carbon leading edge wing panels [1]. Microwave and millimeter wave nondestructive evaluation methods have shown great potential for inspecting SOFI for the purpose of detecting anomalies such as small air voids that may cause separation of the SOFI from the external tank during a launch [2,3]. These methods are capable of producing relatively high-resolution images of the interior of SOFI. Although effective, there are some advantages in using synthetic focusing methods as opposed to real focusing methods such as reduced probe size, the ability to determine depth from multiple views, and the ability to slice images due to sufficient range resolution. To this end, synthetic aperture focusing techniques (SAFT) were first pursued for this purpose and later wide-band microwave holography was implemented [4-7]. This paper presents the results of this investigation using frequency domain synthetic aperture focusing technique (FD-SAFT) and wide-band microwave holography methods illustrating their potential capabilities for inspecting the space shuttle's SOFI at millimeter wave frequencies
The multiplicity of exoplanet host stars - New low-mass stellar companions of the exoplanet host stars HD125612 and HD212301
Aims: We present new results from our ongoing multiplicity study of exoplanet
host stars, carried out with SofI/NTT. We provide the most recent list of
confirmed binary and triple star systems that harbor exoplanets.
Methods: We use direct imaging to identify wide stellar and substellar
companions as co-moving objects to the observed exoplanet host stars, whose
masses and spectral types are determined with follow-up photometry and
spectroscopy.
Results: We found two new co-moving companions of the exoplanet host stars
HD125612 and HD212301. HD125612B is a wide M4 dwarf (0.18 Msun) companion of
the exoplanet host star HD125612, located about 1.5 arcmin (~4750 AU of
projected separation) south-east of its primary. In contrast, HD212301B is a
close M3 dwarf (0.35 Msun), which is found about 4.4 arcsec (~230 AU of
projected separation) north-west of its primary.
Conclusions: The binaries HD125612AB and HD212301AB are new members in the
continuously growing list of exoplanet host star systems of which 43 are
presently known. Hence, the multiplicity rate of exoplanet host stars is about
17%.
Based on observations obtained on La Silla in ESO programs 079.C-0099(A),
080.C-0312(A)Comment: 7 pages, 7 figures, 2 tables, A&A in pres
HD3651B: the first directly imaged brown dwarf companion of an exoplanet host star
In the course of our ongoing multiplicity study of exoplanet host stars we
detected a faint companion located at ~43arcsec (480AU physical projected
separation) north-west of its primary -- the exoplanet host star HD3651 at
11pc. The companion, HD3651B, clearly shares the proper motion of the exoplanet
host star in our four images, obtained with ESO/NTT and UKIRT, spanning three
years in epoch difference. The magnitude of the companion is H=16.75+-0.16mag,
the faintest co-moving companion of an exoplanet host star imaged directly.
HD3651B is not detected in the POSS-II B-, R- and I-band images, indicating
that this object is fainter than ~20mag in the B- and R-band and fainter than
\~19mag in the I-band. With the Hipparcos distance of HD3651 of 11pc, the
absolute magnitude of HD3651B is about 16.5mag in the H band. Our H-band
photometry and the Baraffe et al. (2003) evolutionary models yield a mass of
HD3651B to be 20 to 60MJup for assumed ages between 1 and 10Gyr. The effective
temperature ranges between 800 and 900K, consistent with a spectral type of T7
to T8. We conclude that HD3651B is a brown-dwarf companion, the first of its
kind directly imaged as a companion of an exoplanet host star, and one of the
faintest T dwarfs found in the solar vicinity (within 11pc).Comment: 5 pages, 3 figures, 2 tables, accepted for publication in MNRAS
LETTER
Massive stars in the giant molecular cloud G23.3−0.3 and W41
Context. Young massive stars and stellar clusters continuously form in the Galactic disk, generating new Hii regions within their natal giant molecular clouds and subsequently enriching the interstellar medium via their winds and supernovae.Aims. Massive stars are among the brightest infrared stars in such regions; their identification permits the characterisation of the star formation history of the associated cloud as well as constraining the location of stellar aggregates and hence their occurrence as a function of global environment.Methods. We present a stellar spectroscopic survey in the direction of the giant molecular cloud G23.3−0.3. This complex is located at a distance of ~4–5 kpc, and consists of several Hii regions and supernova remnants.Results. We discovered 11 OfK+ stars, one candidate luminous blue variable, several OB stars, and candidate red supergiants. Stars with K-band extinction from ~1.3–1.9 mag appear to be associated with the GMC G23.3−0.3; O and B-types satisfying this criterion have spectrophotometric distances consistent with that of the giant molecular cloud. Combining near-IR spectroscopic and photometric data allowed us to characterize the multiple sites of star formation within it. The O-type stars have masses from ~25–45 M⊙, and ages of 5–8 Myr. Two new red supergiants were detected with interstellar extinction typical of the cloud; along with the two RSGs within the cluster GLIMPSE9, they trace an older burst with an age of 20–30 Myr. Massive stars were also detected in the core of three supernova remnants – W41, G22.7−0.2, and G22.7583−0.4917.Conclusions. A large population of massive stars appears associated with the GMC G23.3−0.3, with the properties inferred for them indicative of an extended history of stars formation
- …
