55,524 research outputs found

    Atomic scale characterization of the nucleation and growth of SnO2 particles in oxidized CuSn alloys

    Full text link
    The internal oxidation of Sn was investigated to understand the oxidation kinetics of monophase CuSn alloys. SnO2 particles were characterized by analytical transmission electron microscopy. The orientation relationship between SnO2 and Cu was determined with a special emphasis on the atomic scale structure of Cu/SnO2 interfaces (misfit dislocations and chemical structure). Habit planes with a pure oxygen plane terminating the SnO2 phase are greatly favored and large misfits promote the growth of plate shaped precipitates

    Tin dioxide sol-gel derived thin films deposited on porous silicon

    Get PDF
    Undoped and Sb-doped SnO2 sol¿gel derived thin films have been prepared for the first time from tin (IV) ethoxide precursor and SbCl3 in order to be utilised for gas sensing applications where porous silicon is used as a substrate. Transparent, crack-free and adherent layers were obtained on different types of substrates (Si, SiO2/Si). The evolution of the Sn¿O chemical bonds in the SnO2 during film consolidation treatments was monitored by infrared spectroscopy. By energy dispersive X-ray spectroscopy performed on the cross section of the porosified silicon coupled with transmission electron microscopy, the penetration of the SnO2 sol¿gel derived films in the nanometric pores of the porous silicon has been experimentally proved

    Development of new all-optical signal regeneration technique

    Get PDF
    All-optical signal regeneration have been the active research area since last decade due to evolution of nonlinear optical signal processing. Existing all-optical signal regeneration techniques are agitated in producing low Bit Error Rate (BER) of 10-10 at below than -10 dBm power received. In this paper, a new all-optical signal regeneration technique is developed by using phase sensitive amplification and designed optical phase locked signal mechanism. The developed all-optical signal regeneration technique is tested for different 10 Gb/s Differential Phase Shift Keying degraded signals. It is determined that the designed all-optical signal regeneration technique is able to provide signal regeneration with noise mitigation for degraded signals. It is analyzed that overall, for all degraded test signals, average BER of 10-13 is achieved at received power of -14 dBm. The designed technique will be helpful to enhance the performance of existing signal regeneration systems in the presence of severe noise by providing minimum BER at low received power

    Intrinsic Magnetism in Nanosheets of SnO2_{2}: A First-principles Study

    Get PDF
    We propose intrinsic magnetism in nanosheets of SnO2_{2}, based on first-principles calculations. The electronic structure and spin density reveal that pp orbitals of the oxygen atoms, surrounding Sn vacancies, have a non itinerant nature which gives birth to localized magnetism. A giant decrease in defect formation energies of Sn vacancies in nanosheets is observed. We, therefore, believe that native defects can be stabilized without any chemical doping. Nanosheets of different thicknesses are also studied, and it is found that it is easier to create vacancies, which are magnetic, at the surface of the sheets. SnO2_{2} nanosheets can, therefore, open new opportunities in the field of spintronics.Comment: J. Magn. Magn. Mate. 2012 (Accepted

    Surface-induced magnetism in C-doped SnO2_{2}

    Get PDF
    The magnetism of C-doped SnO2_{2} (001) surfaces is studied using first-principles calculations. It is found that carbon does not induce magnetism in bulk SnO2_{2} when located at the oxygen site, but shows a large magnetic moment at the SnO2_{2} (001) surface. The magnetic moment is mainly contributed by the carbon atoms due to empty minority spins of pp orbitals and is localized at the surface and subsurface atoms. No magnetism is observed when the carbon atom is located at the subsurface oxygen sites. The origin of magnetism is discussed in the context of surface bonding.Comment: 3 pages, 3 figure

    Relationship between ae signal strength and absolute energy in determining damage classification of concrete structures

    Get PDF
    The most efficient tools in real monitoring system is acoustic emission (AE). This technique can be used to identify the damage classifications in RC structure. This research paper will mainly focus on the utilization of signal strength and Absolute energy (AE signal) in determining on the damage quantification for RC beam subjected to cyclic load test. The beam specimens size (150 X 250 X 1900) mm were prepared in the laboratory and tested with the four point bending test using cyclic loading together with acoustic emission monitoring system. The results showed that the analysis of AE data parameters is capable of determining the damage classification in concrete structures and the data corresponded to the visual observations during the increased loading cycle
    corecore