107 research outputs found

    Passive Learning with Target Risk

    Full text link
    In this paper we consider learning in passive setting but with a slight modification. We assume that the target expected loss, also referred to as target risk, is provided in advance for learner as prior knowledge. Unlike most studies in the learning theory that only incorporate the prior knowledge into the generalization bounds, we are able to explicitly utilize the target risk in the learning process. Our analysis reveals a surprising result on the sample complexity of learning: by exploiting the target risk in the learning algorithm, we show that when the loss function is both strongly convex and smooth, the sample complexity reduces to \O(\log (\frac{1}{\epsilon})), an exponential improvement compared to the sample complexity \O(\frac{1}{\epsilon}) for learning with strongly convex loss functions. Furthermore, our proof is constructive and is based on a computationally efficient stochastic optimization algorithm for such settings which demonstrate that the proposed algorithm is practically useful

    Improved Dropout for Shallow and Deep Learning

    Full text link
    Dropout has been witnessed with great success in training deep neural networks by independently zeroing out the outputs of neurons at random. It has also received a surge of interest for shallow learning, e.g., logistic regression. However, the independent sampling for dropout could be suboptimal for the sake of convergence. In this paper, we propose to use multinomial sampling for dropout, i.e., sampling features or neurons according to a multinomial distribution with different probabilities for different features/neurons. To exhibit the optimal dropout probabilities, we analyze the shallow learning with multinomial dropout and establish the risk bound for stochastic optimization. By minimizing a sampling dependent factor in the risk bound, we obtain a distribution-dependent dropout with sampling probabilities dependent on the second order statistics of the data distribution. To tackle the issue of evolving distribution of neurons in deep learning, we propose an efficient adaptive dropout (named \textbf{evolutional dropout}) that computes the sampling probabilities on-the-fly from a mini-batch of examples. Empirical studies on several benchmark datasets demonstrate that the proposed dropouts achieve not only much faster convergence and but also a smaller testing error than the standard dropout. For example, on the CIFAR-100 data, the evolutional dropout achieves relative improvements over 10\% on the prediction performance and over 50\% on the convergence speed compared to the standard dropout.Comment: In NIPS 201
    • …
    corecore