99 research outputs found
Total variation regularization of multi-material topology optimization
This work is concerned with the determination of the diffusion coefficient
from distributed data of the state. This problem is related to homogenization
theory on the one hand and to regularization theory on the other hand. An
approach is proposed which involves total variation regularization combined
with a suitably chosen cost functional that promotes the diffusion coefficient
assuming prespecified values at each point of the domain. The main difficulty
lies in the delicate functional-analytic structure of the resulting
nondifferentiable optimization problem with pointwise constraints for functions
of bounded variation, which makes the derivation of useful pointwise optimality
conditions challenging. To cope with this difficulty, a novel reparametrization
technique is introduced. Numerical examples using a regularized semismooth
Newton method illustrate the structure of the obtained diffusion coefficient.
Optimising Spatial and Tonal Data for PDE-based Inpainting
Some recent methods for lossy signal and image compression store only a few
selected pixels and fill in the missing structures by inpainting with a partial
differential equation (PDE). Suitable operators include the Laplacian, the
biharmonic operator, and edge-enhancing anisotropic diffusion (EED). The
quality of such approaches depends substantially on the selection of the data
that is kept. Optimising this data in the domain and codomain gives rise to
challenging mathematical problems that shall be addressed in our work.
In the 1D case, we prove results that provide insights into the difficulty of
this problem, and we give evidence that a splitting into spatial and tonal
(i.e. function value) optimisation does hardly deteriorate the results. In the
2D setting, we present generic algorithms that achieve a high reconstruction
quality even if the specified data is very sparse. To optimise the spatial
data, we use a probabilistic sparsification, followed by a nonlocal pixel
exchange that avoids getting trapped in bad local optima. After this spatial
optimisation we perform a tonal optimisation that modifies the function values
in order to reduce the global reconstruction error. For homogeneous diffusion
inpainting, this comes down to a least squares problem for which we prove that
it has a unique solution. We demonstrate that it can be found efficiently with
a gradient descent approach that is accelerated with fast explicit diffusion
(FED) cycles. Our framework allows to specify the desired density of the
inpainting mask a priori. Moreover, is more generic than other data
optimisation approaches for the sparse inpainting problem, since it can also be
extended to nonlinear inpainting operators such as EED. This is exploited to
achieve reconstructions with state-of-the-art quality.
We also give an extensive literature survey on PDE-based image compression
methods
On the stochastic Cahn-Hilliard equation with a singular double-well potential
We prove well-posedness and regularity for the stochastic pure Cahn-Hilliard
equation under homogeneous Neumann boundary conditions, with both additive and
multiplicative Wiener noise. In contrast with great part of the literature, the
double-well potential is treated as generally as possible, its convex part
being associated to a multivalued maximal monotone graph everywhere defined on
the real line on which no growth nor smoothness assumptions are assumed. The
regularity result allows to give appropriate sense to the chemical potential
and to write a natural variational formulation of the problem. The proofs are
based on suitable monotonicity and compactness arguments in a generalized
variational framework.Comment: 37 page
Cusp Universality for Random Matrices II: The Real Symmetric Case
We prove that the local eigenvalue statistics of real symmetric Wigner-type
matrices near the cusp points of the eigenvalue density are universal. Together
with the companion paper [arXiv:1809.03971], which proves the same result for
the complex Hermitian symmetry class, this completes the last remaining case of
the Wigner-Dyson-Mehta universality conjecture after bulk and edge
universalities have been established in the last years. We extend the recent
Dyson Brownian motion analysis at the edge [arXiv:1712.03881] to the cusp
regime using the optimal local law from [arXiv:1809.03971] and the accurate
local shape analysis of the density from [arXiv:1506.05095, arXiv:1804.07752].
We also present a PDE-based method to improve the estimate on eigenvalue
rigidity via the maximum principle of the heat flow related to the Dyson
Brownian motion.Comment: 62 pages. Updated version with additional reference
- …
