1,019 research outputs found

    Smoothed Analysis in Unsupervised Learning via Decoupling

    Full text link
    Smoothed analysis is a powerful paradigm in overcoming worst-case intractability in unsupervised learning and high-dimensional data analysis. While polynomial time smoothed analysis guarantees have been obtained for worst-case intractable problems like tensor decompositions and learning mixtures of Gaussians, such guarantees have been hard to obtain for several other important problems in unsupervised learning. A core technical challenge in analyzing algorithms is obtaining lower bounds on the least singular value for random matrix ensembles with dependent entries, that are given by low-degree polynomials of a few base underlying random variables. In this work, we address this challenge by obtaining high-confidence lower bounds on the least singular value of new classes of structured random matrix ensembles of the above kind. We then use these bounds to design algorithms with polynomial time smoothed analysis guarantees for the following three important problems in unsupervised learning: 1. Robust subspace recovery, when the fraction Ξ±\alpha of inliers in the d-dimensional subspace TβŠ‚RnT \subset \mathbb{R}^n is at least Ξ±>(d/n)β„“\alpha > (d/n)^\ell for any constant integer β„“>0\ell>0. This contrasts with the known worst-case intractability when Ξ±<d/n\alpha< d/n, and the previous smoothed analysis result which needed Ξ±>d/n\alpha > d/n (Hardt and Moitra, 2013). 2. Learning overcomplete hidden markov models, where the size of the state space is any polynomial in the dimension of the observations. This gives the first polynomial time guarantees for learning overcomplete HMMs in a smoothed analysis model. 3. Higher order tensor decompositions, where we generalize the so-called FOOBI algorithm of Cardoso to find order-β„“\ell rank-one tensors in a subspace. This allows us to obtain polynomially robust decomposition algorithms for 2β„“2\ell'th order tensors with rank O(nβ„“)O(n^{\ell}).Comment: 44 page

    Modeling neural dynamics during speech production using a state space variational autoencoder

    Full text link
    Characterizing the neural encoding of behavior remains a challenging task in many research areas due in part to complex and noisy spatiotemporal dynamics of evoked brain activity. An important aspect of modeling these neural encodings involves separation of robust, behaviorally relevant signals from background activity, which often contains signals from irrelevant brain processes and decaying information from previous behavioral events. To achieve this separation, we develop a two-branch State Space Variational AutoEncoder (SSVAE) model to individually describe the instantaneous evoked foreground signals and the context-dependent background signals. We modeled the spontaneous speech-evoked brain dynamics using smoothed Gaussian mixture models. By applying the proposed SSVAE model to track ECoG dynamics in one participant over multiple hours, we find that the model can predict speech-related dynamics more accurately than other latent factor inference algorithms. Our results demonstrate that separately modeling the instantaneous speech-evoked and slow context-dependent brain dynamics can enhance tracking performance, which has important implications for the development of advanced neural encoding and decoding models in various neuroscience sub-disciplines.Comment: 5 page

    Learning Generative Models across Incomparable Spaces

    Full text link
    Generative Adversarial Networks have shown remarkable success in learning a distribution that faithfully recovers a reference distribution in its entirety. However, in some cases, we may want to only learn some aspects (e.g., cluster or manifold structure), while modifying others (e.g., style, orientation or dimension). In this work, we propose an approach to learn generative models across such incomparable spaces, and demonstrate how to steer the learned distribution towards target properties. A key component of our model is the Gromov-Wasserstein distance, a notion of discrepancy that compares distributions relationally rather than absolutely. While this framework subsumes current generative models in identically reproducing distributions, its inherent flexibility allows application to tasks in manifold learning, relational learning and cross-domain learning.Comment: International Conference on Machine Learning (ICML
    • …
    corecore