626 research outputs found

    Smooth Value Functions for a Class of Nonsmooth Utility Maximization Problems

    Full text link
    In this paper we prove that there exists a smooth classical solution to the HJB equation for a large class of constrained problems with utility functions that are not necessarily differentiable or strictly concave. The value function is smooth if admissible controls satisfy an integrability condition or if it is continuous on the closure of its domain. The key idea is to work on the dual control problem and the dual HJB equation. We construct a smooth, strictly convex solution to the dual HJB equation and show that its conjugate function is a smooth, strictly concave solution to the primal HJB equation satisfying the terminal and boundary conditions.Comment: 18 page

    Decomposition by Successive Convex Approximation: A Unifying Approach for Linear Transceiver Design in Heterogeneous Networks

    Get PDF
    We study the downlink linear precoder design problem in a multi-cell dense heterogeneous network (HetNet). The problem is formulated as a general sum-utility maximization (SUM) problem, which includes as special cases many practical precoder design problems such as multi-cell coordinated linear precoding, full and partial per-cell coordinated multi-point transmission, zero-forcing precoding and joint BS clustering and beamforming/precoding. The SUM problem is difficult due to its non-convexity and the tight coupling of the users' precoders. In this paper we propose a novel convex approximation technique to approximate the original problem by a series of convex subproblems, each of which decomposes across all the cells. The convexity of the subproblems allows for efficient computation, while their decomposability leads to distributed implementation. {Our approach hinges upon the identification of certain key convexity properties of the sum-utility objective, which allows us to transform the problem into a form that can be solved using a popular algorithmic framework called BSUM (Block Successive Upper-Bound Minimization).} Simulation experiments show that the proposed framework is effective for solving interference management problems in large HetNet.Comment: Accepted by IEEE Transactions on Wireless Communicatio
    • …
    corecore