2,395 research outputs found

    Throughput capacity of two-hop relay MANETs under finite buffers

    Full text link
    Since the seminal work of Grossglauser and Tse [1], the two-hop relay algorithm and its variants have been attractive for mobile ad hoc networks (MANETs) due to their simplicity and efficiency. However, most literature assumed an infinite buffer size for each node, which is obviously not applicable to a realistic MANET. In this paper, we focus on the exact throughput capacity study of two-hop relay MANETs under the practical finite relay buffer scenario. The arrival process and departure process of the relay queue are fully characterized, and an ergodic Markov chain-based framework is also provided. With this framework, we obtain the limiting distribution of the relay queue and derive the throughput capacity under any relay buffer size. Extensive simulation results are provided to validate our theoretical framework and explore the relationship among the throughput capacity, the relay buffer size and the number of nodes

    Energy Efficient and Guaranteed Packet Delivery in Mobile Ad Hoc Networks

    Get PDF
    For Ad-hoc network routing protocols, high delivery ratio with low energy consumption is one of design challenges. This paper identifies the limitations of ad hoc routing scheme, in terms of guaranteed delivery with low energy consumption. Accordingly, this paper describe a scheme, in which data is forwarded along a pre-established lone path to save energy, and a high delivery ratio is completed by path repair whenever a break is detected. This paper propose a humble, quick, local path repairing method, whereby a malicious node can be tracked by low energy. This paper implement encoding and compression technique scheme and compare its performance with those of pure lone path without repair and multi-path routing schemes

    Source Delay in Mobile Ad Hoc Networks

    Full text link
    Source delay, the time a packet experiences in its source node, serves as a fundamental quantity for delay performance analysis in networks. However, the source delay performance in highly dynamic mobile ad hoc networks (MANETs) is still largely unknown by now. This paper studies the source delay in MANETs based on a general packet dispatching scheme with dispatch limit ff (PD-ff for short), where a same packet will be dispatched out up to ff times by its source node such that packet dispatching process can be flexibly controlled through a proper setting of ff. We first apply the Quasi-Birth-and-Death (QBD) theory to develop a theoretical framework to capture the complex packet dispatching process in PD-ff MANETs. With the help of the theoretical framework, we then derive the cumulative distribution function as well as mean and variance of the source delay in such networks. Finally, extensive simulation and theoretical results are provided to validate our source delay analysis and illustrate how source delay in MANETs are related to network parameters.Comment: 11page

    Performance of ad hoc networks with two-hop relay routing and limited packet lifetime (extended version)

    Get PDF
    We consider a mobile ad hoc network consisting of three types of nodes (source, destination and relay nodes) and using the two-hop relay routing. This type of routing takes advantage of the mobility and the storage capacity of the nodes, called the relay nodes, in order to route packets between a source and a destination. Packets at relay nodes are assumed to have a limited lifetime in the network. Nodes are moving inside a bounded region according to some random mobility model. Closed-form expressions and asymptotic results when the number of nodes is large are provided for the packet delivery delay and for the energy needed to transmit a packet from the source to its destination. We also introduce and evaluate a variant of the two-hop relay protocol that limits the number of generated copies in the network. Our model is validated through simulations for two mobility models (random waypoint and random direction mobility models), and the performance of the two-hop routing and of the epidemic routing protocols are compared.\ud \u
    • ā€¦
    corecore