9,769 research outputs found
Feasibility and performance of a device for automatic self-detection of symptomatic acute coronary artery occlusion in outpatients with coronary artery disease : a multicentre observational study
Background Time delay between onset of symptoms and seeking medical attention is a major determinant of mortality and morbidity in patients with acute coronary artery occlusion. Response time might be reduced by reliable self-detection. We aimed to formally assess the proof-of-concept and accuracy of self-detection of acute coronary artery occlusion by patients during daily life situations and during the very early stages of acute coronary artery occlusion.
Methods In this multicentre, observational study, we tested the operational feasibility, specificity, and sensitivity of our RELF method, a three-lead detection system with an automatic algorithm built into a mobile handheld device, for detection of acute coronary artery occlusion. Patients were recruited continuously by physician referrals from three Belgian hospitals until the desired sample size was achieved, had been discharged with planned elective percutaneous coronary intervention, and were able to use a smartphone; they were asked to perform random ambulatory selfrecordings for at least 1 week. A similar self-recording was made before percutaneous coronary intervention and at 60 s of balloon occlusion. Patients were clinically followed up until 1 month after discharge. We quantitatively assessed the operational feasibility with an automated dichotomous quality check of self-recordings. Performance was assessed by analysing the receiver operator characteristics of the ST difference vector magnitude. This trial is registered with ClinicalTrials.gov, number NCT02983396.
Findings From Nov 18, 2016, to April 25, 2018, we enrolled 64 patients into the study, of whom 59 (92%) were eligible for self-applications. 58 (91%) of 64 (95% CI 81.0-95.6) patients were able to perform ambulatory self-recordings. Of all 5011 self-recordings, 4567 (91%) were automatically classified as successful within 1 min. In 65 balloon occlusions, 63 index tests at 60 s of occlusion in 55 patients were available. The mean specificity of daily life recordings was 0.96 (0.95-0.97). The mean false positive rate during daily life conditions was 4.19% (95% CI 3.29-5.10). The sensitivity for the target conditions was 0.87 (55 of 63; 95% CI 0.77-0.93) for acute coronary artery occlusion, 0.95 (54 of 57; 0.86-0.98) for acute coronary artery occlusion with electrocardiogram (ECG) changes, and 1.00 (35 of 35) for acute coronary artery occlusion with ECG changes and ST-segment elevation myocardial infarction criteria (STEMI). The index test was more sensitive to detect a 60 s balloon occlusion than the STEMI criteria on 12-lead ECG (87% vs 56%; p<0.0001). The proportion of total variation in study estimates due to heterogeneity between patients (I-2) was low (12.6%). The area under the receiver operator characteristics curve was 0.973 (95% CI 0.956-0.990) for acute coronary artery occlusion at different cutoff values of the magnitude of the ST difference vector. No patients died during the study.
Interpretation Self-recording with our RELF device is feasible for most patients with coronary artery disease. The sensitivity and specificity for automatic detection of the earliest phase of acute coronary artery occlusion support the concept of our RELF device for patient empowerment to reduce delay and increase Survival without overloading emergency services. Copyright (C) 2019 The Author(s). Published by Elsevier Ltd
Recommended from our members
Real-world heart rate norms in the Health eHeart study.
Emerging technology allows patients to measure and record their heart rate (HR) remotely by photoplethysmography (PPG) using smart devices like smartphones. However, the validity and expected distribution of such measurements are unclear, making it difficult for physicians to help patients interpret real-world, remote and on-demand HR measurements. Our goal was to validate HR-PPG, measured using a smartphone app, against HR-electrocardiogram (ECG) measurements and describe out-of-clinic, real-world, HR-PPG values according to age, demographics, body mass index, physical activity level, and disease. To validate the measurements, we obtained simultaneous HR-PPG and HR-ECG in 50 consecutive patients at our cardiology clinic. We then used data from participants enrolled in the Health eHeart cohort between 1 April 2014 and 30 April 2018 to derive real-world norms of HR-PPG according to demographics and medical conditions. HR-PPG and HR-ECG were highly correlated (Intraclass correlation = 0.90). A total of 66,788 Health eHeart Study participants contributed 3,144,332 HR-PPG measurements. The mean real-world HR was 79.1 bpm ± 14.5. The 95th percentile of real-world HR was ≤110 in individuals aged 18-45, ≤100 in those aged 45-60 and ≤95 bpm in individuals older than 60 years old. In multivariable linear regression, the number of medical conditions, female gender, increasing body mass index, and being Hispanic was associated with an increased HR, whereas increasing age was associated with a reduced HR. Our study provides the largest real-world norms for remotely obtained, real-world HR according to various strata and they may help physicians interpret and engage with patients presenting such data
Design and evaluation of a person-centric heart monitoring system over fog computing infrastructure
Heart disease and stroke are becoming the leading cause of death worldwide. Electrocardiography monitoring devices (ECG) are the only tool that helps physicians diagnose cardiac abnormalities. Although the design of ECGs has followed closely the electronics miniaturization evolution over the years, existing wearable ECG have limited accuracy and rely on external resources to analyze the signal and evaluate heart activity. In this paper, we work towards empowering the wearable device with processing capabilities to locally analyze the signal and identify abnormal behavior. The ability to differentiate between normal and abnormal heart activity significantly reduces (a) the need to store the signals, (b) the data transmitted to the cloud and (c) the overall power consumption. Based on this concept, the HEART platform is presented that combines wearable embedded devices, mobile edge devices, and cloud services to provide on-the-spot, reliable, accurate and instant monitoring of the heart. The performance of the system is evaluated concerning the accuracy of detecting abnormal events and the power consumption of the wearable device. Results indicate that a very high percentage of success can be achieved in terms of event detection ratio and the device being operative up to a several days without the need for a recharge
On the Deployment of Healthcare Applications over Fog Computing Infrastructure
Fog computing is considered as the most promising enhancement of the traditional cloud computing paradigm in order to handle potential issues introduced by the emerging Interned of Things (IoT) framework at the network edge. The heterogeneous nature, the extensive distribution and the hefty number of deployed IoT nodes will disrupt existing functional models, creating confusion. However, IoT will facilitate the rise of new applications, with automated healthcare monitoring platforms being amongst them. This paper presents the pillars of design for such applications, along with the evaluation of a working prototype that collects ECG traces from a tailor-made device and utilizes the patient's smartphone as a Fog gateway for securely sharing them to other authorized entities. This prototype will allow patients to share information to their physicians, monitor their health status independently and notify the authorities rapidly in emergency situations. Historical data will also be available for further analysis, towards identifying patterns that may improve medical diagnoses in the foreseeable future
Evaluation of a Behind-the-Ear ECG Device for Smartphone based Integrated Multiple Smart Sensor System in Health Applications
In this paper, we present a wireless Multiple Smart Sensor System (MSSS) in conjunction with a smartphone to enable an unobtrusive monitoring of electrocardiogram (ear-lead ECG) integrated with multiple sensor system which includes core body temperature and blood oxygen saturation (SpO2) for ambulatory patients. The proposed behind-the-ear device makes the system desirable to measure ECG data: technically less complex, physically attached to non-hair regions, hence more suitable for long term use, and user friendly as no need to undress the top garment. The proposed smart sensor device is similar to the hearing aid device and is wirelessly connected to a smartphone for physiological data transmission and displaying. This device not only gives access to the core temperature and ECG from the ear, but also the device can be controlled (removed and reapplied) by the patient at any time, thus increasing the usability of personal healthcare applications. A number of combination ECG electrodes, which are based on the area of the electrode and dry/non-dry nature of the surface of the electrodes are tested at various locations near behind the ear. The best ECG electrode is then chosen based on the Signal-to-Noise Ratio (SNR) of the measured ECG signals. These electrodes showed acceptable SNR ratio of ~20 db, which is comparable with existing tradition ECG electrodes. The developed ECG electrode systems is then integrated with commercially available PPG sensor (Amperor pulse oximeter) and core body temperature sensor (MLX90614) using a specialized micro controller (Arduino UNO) and the results monitored using a newly developed smartphone (android) application
Electrocardiographic patch devices and contemporary wireless cardiac monitoring.
Cardiac electrophysiologic derangements often coexist with disorders of the circulatory system. Capturing and diagnosing arrhythmias and conduction system disease may lead to a change in diagnosis, clinical management and patient outcomes. Standard 12-lead electrocardiogram (ECG), Holter monitors and event recorders have served as useful diagnostic tools over the last few decades. However, their shortcomings are only recently being addressed by emerging technologies. With advances in device miniaturization and wireless technologies, and changing consumer expectations, wearable “on-body” ECG patch devices have evolved to meet contemporary needs. These devices are unobtrusive and easy to use, leading to increased device wear time and diagnostic yield. While becoming the standard for detecting arrhythmias and conduction system disorders in the outpatient setting where continuous ECG monitoring in the short to medium term (days to weeks) is indicated, these cardiac devices and related digital mobile health technologies are reshaping the clinician-patient interface with important implications for future healthcare delivery
- …
