18,881 research outputs found

    Power quality and electromagnetic compatibility: special report, session 2

    Get PDF
    The scope of Session 2 (S2) has been defined as follows by the Session Advisory Group and the Technical Committee: Power Quality (PQ), with the more general concept of electromagnetic compatibility (EMC) and with some related safety problems in electricity distribution systems. Special focus is put on voltage continuity (supply reliability, problem of outages) and voltage quality (voltage level, flicker, unbalance, harmonics). This session will also look at electromagnetic compatibility (mains frequency to 150 kHz), electromagnetic interferences and electric and magnetic fields issues. Also addressed in this session are electrical safety and immunity concerns (lightning issues, step, touch and transferred voltages). The aim of this special report is to present a synthesis of the present concerns in PQ&EMC, based on all selected papers of session 2 and related papers from other sessions, (152 papers in total). The report is divided in the following 4 blocks: Block 1: Electric and Magnetic Fields, EMC, Earthing systems Block 2: Harmonics Block 3: Voltage Variation Block 4: Power Quality Monitoring Two Round Tables will be organised: - Power quality and EMC in the Future Grid (CIGRE/CIRED WG C4.24, RT 13) - Reliability Benchmarking - why we should do it? What should be done in future? (RT 15

    Performance Analysis of Discrete Wavelet Multitone Transceiver for Narrowband PLC in Smart Grid

    Get PDF
    Smart Grid is an abstract idea, which involves the utilization of powerlines for sensing, measurement, control and communication for efficient utilization and distribution of energy, as well as automation of meter reading, load management and capillary control of Green Energy resources connected to the grid. Powerline Communication (PLC) has assumed a new role in the Smart Grid scenario, adopting the narrowband PLC (NB-PLC) for a low cost and low data rate communication for applications such as, automatic meter reading, dynamic management of load, etc. In this paper, we have proposed and simulated a discrete wavelet multitone (DWMT) transceiver in the presence of impulse noise for the NB-PLC channel applications in Smart Grid. The simulation results show that a DWMT transceiver outperforms a DFT-DMT with reference to the bit error rate (BER) performance

    The status of river water quality in some rural areas, in state of Johor and its effects to life

    Get PDF
    Water is a basic requirement of human and other life. Water resources stems from rivers, streams, drains, ponds and so forth. The river is the natural water resources are very important for a human habitat. Malaysian water quality assessment is determined by the water quality Index (IKA) issued by the Department of environment (DOE) based on class I, II, III and IV. Now a water pollution also occurs in rural areas has affected the water quality and marine life. The objective of this writing is to determine river water quality in rural areas based on IKA. Kajian telah dijalankan di beberapa batang sungai di kawasan luar bandar di negeri Johor bermula dari bulan Februari sehingga April 2015. Water quality sampling was done three times in four different study locations. Determination of water quality involves measurement parameters pH, dissolved oxygen (DO), biochemical oxygen demand (BOD), chemical oxygen demand (COD), ammoniacal nitrogen (AN) and suspended solids (SS). The Measurements are made IKA the total calculated and used to classify the river either as untainted, slightly polluted moderately polluted, contaminated and polluted. The study found the status of three rivers polluted level contaminated (class IV) and a river are classified at the level of medium-polluted (class III). Deterioration of the status of IKA for all rivers surveyed not only affects marine life, even limiting water use to humans, for example, to daily activities

    Internet of Things-aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions

    Full text link
    Traditional power grids are being transformed into Smart Grids (SGs) to address the issues in existing power system due to uni-directional information flow, energy wastage, growing energy demand, reliability and security. SGs offer bi-directional energy flow between service providers and consumers, involving power generation, transmission, distribution and utilization systems. SGs employ various devices for the monitoring, analysis and control of the grid, deployed at power plants, distribution centers and in consumers' premises in a very large number. Hence, an SG requires connectivity, automation and the tracking of such devices. This is achieved with the help of Internet of Things (IoT). IoT helps SG systems to support various network functions throughout the generation, transmission, distribution and consumption of energy by incorporating IoT devices (such as sensors, actuators and smart meters), as well as by providing the connectivity, automation and tracking for such devices. In this paper, we provide a comprehensive survey on IoT-aided SG systems, which includes the existing architectures, applications and prototypes of IoT-aided SG systems. This survey also highlights the open issues, challenges and future research directions for IoT-aided SG systems

    Scenarios for the development of smart grids in the UK: literature review

    Get PDF
    Smart grids are expected to play a central role in any transition to a low-carbon energy future, and much research is currently underway on practically every area of smart grids. However, it is evident that even basic aspects such as theoretical and operational definitions, are yet to be agreed upon and be clearly defined. Some aspects (efficient management of supply, including intermittent supply, two-way communication between the producer and user of electricity, use of IT technology to respond to and manage demand, and ensuring safe and secure electricity distribution) are more commonly accepted than others (such as smart meters) in defining what comprises a smart grid. It is clear that smart grid developments enjoy political and financial support both at UK and EU levels, and from the majority of related industries. The reasons for this vary and include the hope that smart grids will facilitate the achievement of carbon reduction targets, create new employment opportunities, and reduce costs relevant to energy generation (fewer power stations) and distribution (fewer losses and better stability). However, smart grid development depends on additional factors, beyond the energy industry. These relate to issues of public acceptability of relevant technologies and associated risks (e.g. data safety, privacy, cyber security), pricing, competition, and regulation; implying the involvement of a wide range of players such as the industry, regulators and consumers. The above constitute a complex set of variables and actors, and interactions between them. In order to best explore ways of possible deployment of smart grids, the use of scenarios is most adequate, as they can incorporate several parameters and variables into a coherent storyline. Scenarios have been previously used in the context of smart grids, but have traditionally focused on factors such as economic growth or policy evolution. Important additional socio-technical aspects of smart grids emerge from the literature review in this report and therefore need to be incorporated in our scenarios. These can be grouped into four (interlinked) main categories: supply side aspects, demand side aspects, policy and regulation, and technical aspects.

    Detection of Non-Technical Losses in Smart Distribution Networks: a Review

    Get PDF
    With the advent of smart grids, distribution utilities have initiated a large deployment of smart meters on the premises of the consumers. The enormous amount of data obtained from the consumers and communicated to the utility give new perspectives and possibilities for various analytics-based applications. In this paper the current smart metering-based energy-theft detection schemes are reviewed and discussed according to two main distinctive categories: A) system statebased, and B) arti cial intelligence-based.Comisión Europea FP7-PEOPLE-2013-IT
    corecore