191,171 research outputs found
Performance Analysis of Discrete Wavelet Multitone Transceiver for Narrowband PLC in Smart Grid
Smart Grid is an abstract idea, which involves the utilization of powerlines for sensing, measurement, control and communication for efficient utilization and distribution of energy, as well as automation of meter reading, load management and capillary control of Green Energy resources connected to the grid. Powerline Communication (PLC) has assumed a new role in the Smart Grid scenario, adopting the narrowband PLC (NB-PLC) for a low cost and low data rate communication for applications such as, automatic meter reading, dynamic management of load, etc. In this paper, we have proposed and simulated a discrete wavelet multitone (DWMT) transceiver in the presence of impulse noise for the NB-PLC channel applications in Smart Grid. The simulation results show that a DWMT transceiver outperforms a DFT-DMT with reference to the bit error rate (BER) performance
Data Mining to Uncover Heterogeneous Water Use Behaviors From Smart Meter Data
Knowledge on the determinants and patterns of water demand for different consumers supports the design of customized demand management strategies. Smart meters coupled with big data analytics tools create a unique opportunity to support such strategies. Yet, at present, the information content of smart meter data is not fully mined and usually needs to be complemented with water fixture inventory and survey data to achieve detailed customer segmentation based on end use water usage. In this paper, we developed a data‐driven approach that extracts information on heterogeneous water end use routines, main end use components, and temporal characteristics, only via data mining existing smart meter readings at the scale of individual households. We tested our approach on data from 327 households in Australia, each monitored with smart meters logging water use readings every 5 s. As part of the approach, we first disaggregated the household‐level water use time series into different end uses via Autoflow. We then adapted a customer segmentation based on eigenbehavior analysis to discriminate among heterogeneous water end use routines and identify clusters of consumers presenting similar routines. Results revealed three main water end use profile clusters, each characterized by a primary end use: shower, clothes washing, and irrigation. Time‐of‐use and intensity‐of‐use differences exist within each class, as well as different characteristics of regularity and periodicity over time. Our customer segmentation analysis approach provides utilities with a concise snapshot of recurrent water use routines from smart meter data and can be used to support customized demand management strategies.TU Berlin, Open-Access-Mittel - 201
Smart Meter Privacy: A Utility-Privacy Framework
End-user privacy in smart meter measurements is a well-known challenge in the
smart grid. The solutions offered thus far have been tied to specific
technologies such as batteries or assumptions on data usage. Existing solutions
have also not quantified the loss of benefit (utility) that results from any
such privacy-preserving approach. Using tools from information theory, a new
framework is presented that abstracts both the privacy and the utility
requirements of smart meter data. This leads to a novel privacy-utility
tradeoff problem with minimal assumptions that is tractable. Specifically for a
stationary Gaussian Markov model of the electricity load, it is shown that the
optimal utility-and-privacy preserving solution requires filtering out
frequency components that are low in power, and this approach appears to
encompass most of the proposed privacy approaches.Comment: Accepted for publication and presentation at the IEEE SmartGridComm.
201
Review of Smart Meter Data Analytics: Applications, Methodologies, and Challenges
The widespread popularity of smart meters enables an immense amount of
fine-grained electricity consumption data to be collected. Meanwhile, the
deregulation of the power industry, particularly on the delivery side, has
continuously been moving forward worldwide. How to employ massive smart meter
data to promote and enhance the efficiency and sustainability of the power grid
is a pressing issue. To date, substantial works have been conducted on smart
meter data analytics. To provide a comprehensive overview of the current
research and to identify challenges for future research, this paper conducts an
application-oriented review of smart meter data analytics. Following the three
stages of analytics, namely, descriptive, predictive and prescriptive
analytics, we identify the key application areas as load analysis, load
forecasting, and load management. We also review the techniques and
methodologies adopted or developed to address each application. In addition, we
also discuss some research trends, such as big data issues, novel machine
learning technologies, new business models, the transition of energy systems,
and data privacy and security.Comment: IEEE Transactions on Smart Grid, 201
Load Hiding of Household's Power Demand
With the development and introduction of smart metering, the energy
information for costumers will change from infrequent manual meter readings to
fine-grained energy consumption data. On the one hand these fine-grained
measurements will lead to an improvement in costumers' energy habits, but on
the other hand the fined-grained data produces information about a household
and also households' inhabitants, which are the basis for many future privacy
issues. To ensure household privacy and smart meter information owned by the
household inhabitants, load hiding techniques were introduced to obfuscate the
load demand visible at the household energy meter. In this work, a
state-of-the-art battery-based load hiding (BLH) technique, which uses a
controllable battery to disguise the power consumption and a novel load hiding
technique called load-based load hiding (LLH) are presented. An LLH system uses
an controllable household appliance to obfuscate the household's power demand.
We evaluate and compare both load hiding techniques on real household data and
show that both techniques can strengthen household privacy but only LLH can
increase appliance level privacy
Smart Meter Devices and The Effect of Feedback on Residential Electricity Consumption: Evidence from a Natural Experiment in Northern Ireland
Using a unique set of data and exploiting a large-scale natural experiment, we estimate the effect of real-time usage information on residential electricity consumption in Northern Ireland. Starting in April 2002, the utility replaced prepayment meters with “smart” meters that allow the consumer to track usage in real-time. We rely on this event, account for the endogeneity of price and plan with consumption through a plan selection correction term, and find that the provision of information is associated with a decline in electricity consumption of up to 20%. We find that the reduction is robust to different specifications, selection-bias correction methods and subsamples of the original data. At £15-17 per tonne of CO2e (2009£), the smart meter program delivers cost-effective reductions in carbon dioxide emissions.Residential Energy, Electricity Demand, Feedback, Smart Meter, Information
- …
