79,332 research outputs found
The Feasibility of a Using a Smart Button Mobile Health System to Self-Track Medication Adherence and Deliver Tailored Short Message Service Text Message Feedback
BACKGROUND:
As many as 50% of people experience medication nonadherence, yet studies for detecting nonadherence and delivering real-time interventions to improve adherence are lacking. Mobile health (mHealth) technologies show promise to track and support medication adherence.
OBJECTIVE:
The study aimed to evaluate the feasibility and acceptability of using an mHealth system for medication adherence tracking and intervention delivery. The mHealth system comprises a smart button device to self-track medication taking, a companion smartphone app, a computer algorithm used to determine adherence and then deliver a standard or tailored SMS (short message service) text message on the basis of timing of medication taking. Standard SMS text messages indicated that the smartphone app registered the button press, whereas tailored SMS text messages encouraged habit formation and systems thinking on the basis of the timing the medications were taken.
METHODS:
A convenience sample of 5 adults with chronic kidney disease (CKD), who were prescribed antihypertensive medication, participated in a 52-day longitudinal study. The study was conducted in 3 phases, with a standard SMS text message sent in phases 1 (study days 1-14) and 3 (study days 46-52) and tailored SMS text messages sent during phase 2 (study days 15-45) in response to participant medication self-tracking. Medication adherence was measured using: (1) the smart button and (2) electronic medication monitoring caps. Concordance between these 2 methods was evaluated using percentage of measurements made on the same day and occurring within ±5 min of one another. Acceptability was evaluated using qualitative feedback from participants.
RESULTS:
A total of 5 patients with CKD, stages 1-4, were enrolled in the study, with the majority being men (60%), white (80%), and Hispanic/Latino (40%) of middle age (52.6 years, SD 22.49; range 20-70). The mHealth system was successfully initiated in the clinic setting for all enrolled participants. Of the expected 260 data points, 36.5% (n=95) were recorded with the smart button and 76.2% (n=198) with electronic monitoring. Concordant events (n=94), in which events were recorded with both the smart button and electronic monitoring, occurred 47% of the time and 58% of these events occurred within ±5 min of one another. Participant comments suggested SMS text messages were encouraging.
CONCLUSIONS:
It was feasible to recruit participants in the clinic setting for an mHealth study, and our system was successfully initiated for all enrolled participants. The smart button is an innovative way to self-report adherence data, including date and timing of medication taking, which were not previously available from measures that rely on recall of adherence. Although the selected smart button had poor concordance with electronic monitoring caps, participants were willing to use it to self-track medication adherence, and they found the mHealth system acceptable to use in most cases
Self-tracking modes: reflexive self-monitoring and data practices
The concept of ‘self-tracking’ (also referred to as life-logging, the quantified self, personal analytics and personal informatics) has recently begun to emerge in discussions of ways in which people can voluntarily monitor and record specific features of their lives, often using digital technologies. There is evidence that the personal data that are derived from individuals engaging in such reflexive self-monitoring are now beginning to be used by actors, agencies and organisations beyond the personal and privatised realm.
Self-tracking rationales and sites are proliferating as part of a ‘function creep’ of the technology and ethos of self-tracking. The detail offered by these data on individuals and the growing commodification and commercial value of digital data have led government, managerial and commercial enterprises to explore ways of appropriating self-tracking for their own purposes. In some contexts people are encouraged, ‘nudged’, obliged or coerced into using digital devices to produce personal data which are then used by others.
This paper examines these issues, outlining five modes of self-tracking that have emerged: private, communal, pushed, imposed and exploited. The analysis draws upon theoretical perspectives on concepts of selfhood, citizenship, biopolitics and data practices and assemblages in discussing the wider sociocultural implications of the emergence and development of these modes of self-tracking
Recommended from our members
Beyond First/Last Mile Active Transportation - BikeShare@UH
Bike sharing is a new green transportation solution that has been developed and adopted at various cities around the world. In this paper, we present the process and results of the design and prototypes that a group of undergraduate students developed for a BikeShare@UH program during Summer 2017. After presenting the detailed results of four project teams focusing on customer discovery, bike share station (BSS) location identification, cloud-based mobile computing platform for user engagement and bike share program operation and management, smart lock, and alternative energy source based on PV panel. With the phase one implementation at the University planned in Spring 2018, we anticipate gathering real time data and feedback to improve the system.Cockrell School of Engineerin
Locational wireless and social media-based surveillance
The number of smartphones and tablets as well as the volume of traffic generated by these devices has been growing constantly over the past decade and this growth is predicted to continue at an increasing rate over the next five years. Numerous native features built into contemporary smart devices enable highly accurate digital fingerprinting techniques. Furthermore, software developers have been taking advantage of locational capabilities of these devices by building applications and social media services that enable convenient sharing of information tied to geographical locations. Mass online sharing resulted in a large volume of locational and personal data being publicly available for extraction. A number of researchers have used this opportunity to design and build tools for a variety of uses – both respectable and nefarious. Furthermore, due to the peculiarities of the IEEE 802.11 specification, wireless-enabled smart devices disclose a number of attributes, which can be observed via passive monitoring. These attributes coupled with the information that can be extracted using social media APIs present an opportunity for research into locational surveillance, device fingerprinting and device user identification techniques. This paper presents an in-progress research study and details the findings to date
- …
