1,552 research outputs found
Augmenting forearm crutches with wireless sensors for lower limb rehabilitation
Forearm crutches are frequently used in the rehabilitation of an injury to the lower limb. The recovery rate is improved if the patient correctly applies a certain fraction of their body weight (specified by a clinician) through the axis of the crutch, referred to as partial weight bearing (PWB). Incorrect weight bearing has been shown to result in an extended recovery period or even cause further damage to the limb. There is currently no minimally invasive tool for long-term monitoring of a patient's PWB in a home environment. This paper describes the research and development of an instrumented forearm crutch that has been developed to wirelessly and autonomously monitor a patient's weight bearing over the full period of their recovery, including its potential use in a home environment. A pair of standard forearm crutches are augmented with low-cost off-the-shelf wireless sensor nodes and electronic components to provide indicative measurements of the applied weight, crutch tilt and hand position on the grip. Data are wirelessly transmitted between crutches and to a remote computer (where they are processed and visualized in LabVIEW), and the patient receives biofeedback by means of an audible signal when they put too much or too little weight through the crutch. The initial results obtained highlight the capability of the instrumented crutch to support physiotherapists and patients in monitoring usage
SysMART Indoor Services: A System of Smart and Connected Supermarkets
Smart gadgets are being embedded almost in every aspect of our lives. From
smart cities to smart watches, modern industries are increasingly supporting
the Internet of Things (IoT). SysMART aims at making supermarkets smart,
productive, and with a touch of modern lifestyle. While similar implementations
to improve the shopping experience exists, they tend mainly to replace the
shopping activity at the store with online shopping. Although online shopping
reduces time and effort, it deprives customers from enjoying the experience.
SysMART relies on cutting-edge devices and technology to simplify and reduce
the time required during grocery shopping inside the supermarket. In addition,
the system monitors and maintains perishable products in good condition
suitable for human consumption. SysMART is built using state-of-the-art
technologies that support rapid prototyping and precision data acquisition. The
selected development environment is LabVIEW with its world-class interfacing
libraries. The paper comprises a detailed system description, development
strategy, interface design, software engineering, and a thorough analysis and
evaluation.Comment: 7 pages, 11 figur
Wearable Capacitive-based Wrist-worn Gesture Sensing System
Gesture control plays an increasingly significant role in modern human-machine interactions. This paper presents an innovative method of gesture recognition using flexible capacitive pressure sensor attached on user’s wrist towards computer vision and connecting senses on fingers. The method is based on the pressure variations around the wrist when the gesture changes. Flexible and ultrathin capacitive pressure sensors are deployed to capture the pressure variations. The embedding of sensors on a flexible substrate and obtain the relevant capacitance require a reliable approach based on a microcontroller to measure a small change of capacitive sensor. This paper is addressing these challenges, collect and process the measured capacitance values through a developed programming on LabVIEW to reconstruct the gesture on computer. Compared to the conventional approaches, the wrist-worn sensing method offerings a low-cost, lightweight and wearable prototype on the user’s body. The experimental result shows that the potentiality and benefits of this approach and confirms that accuracy and number of recognizable gestures can be improved by increasing number of sensor
Deployment of assisted living technology solution platform using smart body sensors for elderly people health monitoring.
Many of the Ambient Assisted Living Technologies (AALT) available in the market to the end-users with long term health condition have no common inter-operational protocol. Each product has its own communication protocols, different interfaces and interoperation which limits their solution reliability, flexibility and efficiency. This paper presents assisted living platform solution for elderly people with long term health condition based on wireless sensors networking technology. The system includes multi feedback sensor arrangements for monitoring, such as: blood pressure, heart rate and body temperature. Each sensor has been integrated with the necessary near real time embedded and wireless protocols that allow data collection, transfer and interoperate in ad-hoc bases. The data will be communicated wirelessly to central data base system and shared though cloud network. The collected data will be processed and relevant intelligent algorithms will be deployed to ensure certain actions taken place when health condition warnings arise. These warnings to be communicated to relevant carer, General Practitioner (GP) and health authority to take the necessary action and steps to handle such end user health condition warnings. The proposed solution system will provide the flexibility to analyse most of the health conditions based on near real time monitoring technology. It will enable the population of elderly with long term health condition to manage their daily life activities within multiple environments i.e. from their comfort home, care centres and hospitals. The data and information will be treated with high confidentiality to ensure end-users integrity and dignity have been maintained.N/
Simulasi Sistem Keamanan Palang Pintu Perlintasan Kereta Api Menggunakan LabVIEW
Infrared sensor and photodiode is widely used in a wide variety of applications, ranging from the military field, health and so forth. Infrared sensor and photodiode can detect any objects that pass nearby, it is because the infrared sensor and photodiode has a high sensitivity. The railway gate security system, infrared sensor very helpful. The secutiry systems designed using LabVIEW can work by monitoring sensors connected to the microcontroller Arduino Uno. The program on Arduino microcontroller designed by entering commands to be execute. To run the simulations, LabVIEW and Arduino should be interfaced first in order to communicate well. NI-VISA application is added as a means between LabVIEW and Arduino in LabVIEW
IoT for Real Time Data Logger and pH Controller
Acidity in wastewater is the critical problem in developing country. The absence of efficient wastewater management has caused serious environmental problems and cost issues. Therefore, in this paper IoT-based data logger and pH controller is proposed to reduce the inefficiency. IoT is a concept whereby objects around us can interact and exchange information with each other without human intermediaries through the Internet. One of the implementation of IoT is to monitor the level of liquid acidity through smartphones. It needs additional tools such as sensors, microcontrollers, and other devices that are then connected to the internet. Android-based mobile phone is used to interact with sensors, microcontroller, and other tools through the internet wherever the user is. From the testing, there is a successful communication between the components of the device, sensors, and Android devices. It is possible to adjust the acidity of the liquid automatically by activating the pump in accordance with the results of the pH reading
- …
