6 research outputs found

    Smart Fridge / Dumb Grid? Demand Dispatch for the Power Grid of 2020

    Full text link
    In discussions at the 2015 HICSS meeting, it was argued that loads can provide most of the ancillary services required today and in the future. Through load-level and grid-level control design, high-quality ancillary service for the grid is obtained without impacting quality of service delivered to the consumer. This approach to grid regulation is called demand dispatch: loads are providing service continuously and automatically, without consumer interference. In this paper we ask, what intelligence is required at the grid-level? In particular, does the grid-operator require more than one-way communication to the loads? Our main conclusion: risk is not great in lower frequency ranges, e.g., PJM's RegA or BPA's balancing reserves. In particular, ancillary services from refrigerators and pool-pumps can be obtained successfully with only one-way communication. This requires intelligence at the loads, and much less intelligence at the grid level

    Benchmarks for Grid Flexibility Prediction: Enabling Progress and Machine Learning Applications

    Get PDF
    International audienceDecarbonizing the grid is recognized worldwide as one of the objectives for the next decades. Its success depends on our ability to massively deploy renewable resources, but to fully benefit from those, grid flexibility is needed. In this paper we put forward the design of a benchmark that will allow for the systematic measurement of demand response programs' effectiveness, information that we do not currently have. Furthermore, we explain how the proposed benchmark will facilitate the use of Machine Learning techniques in grid flexibility applications

    Optimization of stochastic lossy transport networks and applications to power grids

    Get PDF
    Motivated by developments in renewable energy and smart grids, we formulate a stylized mathematical model of a transport network with stochastic load fluctuations. Using an affine control rule, we explore the trade-off between the number of controllable resources in a lossy transport network and the performance gain they yield in terms of expected power losses. Our results are explicit and reveal the interaction between the level of flexibility, the intrinsic load uncertainty and the network structure.Comment: 30 pages, 10 figure

    Distributed Control Design for Balancing the Grid Using Flexible Loads

    Get PDF
    International audienceInexpensive energy from the wind and the sun comes with unwanted volatility, such as ramps with the setting sun or a gust of wind. Controllable generators manage supply-demand balance of power today, but this is becoming increasingly costly with increasing penetration of renewable energy. It has been argued since the 1980s that consumers should be put in the loop: " demand response " will help to create needed supply-demand balance. However, consumers use power for a reason, and expect that the quality of service (QoS) they receive will lie within reasonable bounds. Moreover, the behavior of some consumers is unpredictable, while the grid operator requires predictable controllable resources to maintain reliability. The goal of this chapter is to describe an emerging science for demand dispatch that will create virtual energy storage from flexible loads. By design, the grid-level services from flexible loads will be as controllable and predictable as a generator or fleet of batteries. Strict bounds on QoS will be maintained in all cases. The potential economic impact of these new resources is enormous. California plans to spend billions of dollars on batteries that will provide only a small fraction of the balancing services that can be obtained using demand dispatch. The potential impact on society is enormous: a sustainable energy future is possible with the right mix of infrastructure and control systems
    corecore