2,660 research outputs found

    The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices

    Get PDF
    We consider the eigenvalues and eigenvectors of finite, low rank perturbations of random matrices. Specifically, we prove almost sure convergence of the extreme eigenvalues and appropriate projections of the corresponding eigenvectors of the perturbed matrix for additive and multiplicative perturbation models. The limiting non-random value is shown to depend explicitly on the limiting eigenvalue distribution of the unperturbed random matrix and the assumed perturbation model via integral transforms that correspond to very well known objects in free probability theory that linearize non-commutative free additive and multiplicative convolution. Furthermore, we uncover a phase transition phenomenon whereby the large matrix limit of the extreme eigenvalues of the perturbed matrix differs from that of the original matrix if and only if the eigenvalues of the perturbing matrix are above a certain critical threshold. Square root decay of the eigenvalue density at the edge is sufficient to ensure that this threshold is finite. This critical threshold is intimately related to the same aforementioned integral transforms and our proof techniques bring this connection and the origin of the phase transition into focus. Consequently, our results extend the class of `spiked' random matrix models about which such predictions (called the BBP phase transition) can be made well beyond the Wigner, Wishart and Jacobi random ensembles found in the literature. We examine the impact of this eigenvalue phase transition on the associated eigenvectors and observe an analogous phase transition in the eigenvectors. Various extensions of our results to the problem of non-extreme eigenvalues are discussed.Comment: 27 pages, 1 figure. The paragraph devoted to rectangular matrices has been suppressed in this version (it will appear independently in a forthcoming paper

    The singular values and vectors of low rank perturbations of large rectangular random matrices

    Get PDF
    In this paper, we consider the singular values and singular vectors of finite, low rank perturbations of large rectangular random matrices. Specifically, we prove almost sure convergence of the extreme singular values and appropriate projections of the corresponding singular vectors of the perturbed matrix. As in the prequel, where we considered the eigenvalue aspect of the problem, the non-random limiting value is shown to depend explicitly on the limiting singular value distribution of the unperturbed matrix via an integral transforms that linearizes rectangular additive convolution in free probability theory. The large matrix limit of the extreme singular values of the perturbed matrix differs from that of the original matrix if and only if the singular values of the perturbing matrix are above a certain critical threshold which depends on this same aforementioned integral transform. We examine the consequence of this singular value phase transition on the associated left and right singular eigenvectors and discuss the finite nn fluctuations above these non-random limits.Comment: 22 pages, presentation of the main results and of the hypotheses slightly modifie

    Real eigenvalues in the non-Hermitian Anderson model

    Full text link
    The eigenvalues of the Hatano--Nelson non-Hermitian Anderson matrices, in the spectral regions in which the Lyapunov exponent exceeds the non-Hermiticity parameter, are shown to be real and exponentially close to the Hermitian eigenvalues. This complements previous results, according to which the eigenvalues in the spectral regions in which the non-Hermiticity parameter exceeds the Lyapunov exponent are aligned on curves in the complex plane.Comment: 21 pp., 2 fig; to appear in Ann. Appl. Proba
    • …
    corecore