1,201 research outputs found

    Small-footprint Deep Neural Networks with Highway Connections for Speech Recognition

    Get PDF
    For speech recognition, deep neural networks (DNNs) have significantly improved the recognition accuracy in most of benchmark datasets and application domains. However, compared to the conventional Gaussian mixture models, DNN-based acoustic models usually have much larger number of model parameters, making it challenging for their applications in resource constrained platforms, e.g., mobile devices. In this paper, we study the application of the recently proposed highway network to train small-footprint DNNs, which are {\it thinner} and {\it deeper}, and have significantly smaller number of model parameters compared to conventional DNNs. We investigated this approach on the AMI meeting speech transcription corpus which has around 70 hours of audio data. The highway neural networks constantly outperformed their plain DNN counterparts, and the number of model parameters can be reduced significantly without sacrificing the recognition accuracy.Comment: 5 pages, 3 figures, fixed typo, accepted by Interspeech 201

    Semi-tied Units for Efficient Gating in LSTM and Highway Networks

    Full text link
    Gating is a key technique used for integrating information from multiple sources by long short-term memory (LSTM) models and has recently also been applied to other models such as the highway network. Although gating is powerful, it is rather expensive in terms of both computation and storage as each gating unit uses a separate full weight matrix. This issue can be severe since several gates can be used together in e.g. an LSTM cell. This paper proposes a semi-tied unit (STU) approach to solve this efficiency issue, which uses one shared weight matrix to replace those in all the units in the same layer. The approach is termed "semi-tied" since extra parameters are used to separately scale each of the shared output values. These extra scaling factors are associated with the network activation functions and result in the use of parameterised sigmoid, hyperbolic tangent, and rectified linear unit functions. Speech recognition experiments using British English multi-genre broadcast data showed that using STUs can reduce the calculation and storage cost by a factor of three for highway networks and four for LSTMs, while giving similar word error rates to the original models.Comment: To appear in Proc. INTERSPEECH 2018, September 2-6, 2018, Hyderabad, Indi

    Light Gated Recurrent Units for Speech Recognition

    Full text link
    A field that has directly benefited from the recent advances in deep learning is Automatic Speech Recognition (ASR). Despite the great achievements of the past decades, however, a natural and robust human-machine speech interaction still appears to be out of reach, especially in challenging environments characterized by significant noise and reverberation. To improve robustness, modern speech recognizers often employ acoustic models based on Recurrent Neural Networks (RNNs), that are naturally able to exploit large time contexts and long-term speech modulations. It is thus of great interest to continue the study of proper techniques for improving the effectiveness of RNNs in processing speech signals. In this paper, we revise one of the most popular RNN models, namely Gated Recurrent Units (GRUs), and propose a simplified architecture that turned out to be very effective for ASR. The contribution of this work is two-fold: First, we analyze the role played by the reset gate, showing that a significant redundancy with the update gate occurs. As a result, we propose to remove the former from the GRU design, leading to a more efficient and compact single-gate model. Second, we propose to replace hyperbolic tangent with ReLU activations. This variation couples well with batch normalization and could help the model learn long-term dependencies without numerical issues. Results show that the proposed architecture, called Light GRU (Li-GRU), not only reduces the per-epoch training time by more than 30% over a standard GRU, but also consistently improves the recognition accuracy across different tasks, input features, noisy conditions, as well as across different ASR paradigms, ranging from standard DNN-HMM speech recognizers to end-to-end CTC models.Comment: Copyright 2018 IEE

    Knowledge Distillation for Small-footprint Highway Networks

    Get PDF
    Deep learning has significantly advanced state-of-the-art of speech recognition in the past few years. However, compared to conventional Gaussian mixture acoustic models, neural network models are usually much larger, and are therefore not very deployable in embedded devices. Previously, we investigated a compact highway deep neural network (HDNN) for acoustic modelling, which is a type of depth-gated feedforward neural network. We have shown that HDNN-based acoustic models can achieve comparable recognition accuracy with much smaller number of model parameters compared to plain deep neural network (DNN) acoustic models. In this paper, we push the boundary further by leveraging on the knowledge distillation technique that is also known as {\it teacher-student} training, i.e., we train the compact HDNN model with the supervision of a high accuracy cumbersome model. Furthermore, we also investigate sequence training and adaptation in the context of teacher-student training. Our experiments were performed on the AMI meeting speech recognition corpus. With this technique, we significantly improved the recognition accuracy of the HDNN acoustic model with less than 0.8 million parameters, and narrowed the gap between this model and the plain DNN with 30 million parameters.Comment: 5 pages, 2 figures, accepted to icassp 201
    • …
    corecore