207 research outputs found

    Generating spherical multiquadrangulations by restricted vertex splittings and the reducibility of equilibrium classes

    Get PDF
    A quadrangulation is a graph embedded on the sphere such that each face is bounded by a walk of length 4, parallel edges allowed. All quadrangulations can be generated by a sequence of graph operations called vertex splitting, starting from the path P_2 of length 2. We define the degree D of a splitting S and consider restricted splittings S_{i,j} with i <= D <= j. It is known that S_{2,3} generate all simple quadrangulations. Here we investigate the cases S_{1,2}, S_{1,3}, S_{1,1}, S_{2,2}, S_{3,3}. First we show that the splittings S_{1,2} are exactly the monotone ones in the sense that the resulting graph contains the original as a subgraph. Then we show that they define a set of nontrivial ancestors beyond P_2 and each quadrangulation has a unique ancestor. Our results have a direct geometric interpretation in the context of mechanical equilibria of convex bodies. The topology of the equilibria corresponds to a 2-coloured quadrangulation with independent set sizes s, u. The numbers s, u identify the primary equilibrium class associated with the body by V\'arkonyi and Domokos. We show that both S_{1,1} and S_{2,2} generate all primary classes from a finite set of ancestors which is closely related to their geometric results. If, beyond s and u, the full topology of the quadrangulation is considered, we arrive at the more refined secondary equilibrium classes. As Domokos, L\'angi and Szab\'o showed recently, one can create the geometric counterparts of unrestricted splittings to generate all secondary classes. Our results show that S_{1,2} can only generate a limited range of secondary classes from the same ancestor. The geometric interpretation of the additional ancestors defined by monotone splittings shows that minimal polyhedra play a key role in this process. We also present computational results on the number of secondary classes and multiquadrangulations.Comment: 21 pages, 11 figures and 3 table

    Stability of geodesics in the Brownian map

    Full text link
    The Brownian map is a random geodesic metric space arising as the scaling limit of random planar maps. We strengthen the so-called confluence of geodesics phenomenon observed at the root of the map, and with this, reveal several properties of its rich geodesic structure. Our main result is the continuity of the cut locus at typical points. A small shift from such a point results in a small, local modification to the cut locus. Moreover, the cut locus is uniformly stable, in the sense that any two cut loci coincide outside a closed, nowhere dense set of zero measure. We obtain similar stability results for the set of points inside geodesics to a fixed point. Furthermore, we show that the set of points inside geodesics of the map is of first Baire category. Hence, most points in the Brownian map are endpoints. Finally, we classify the types of geodesic networks which are dense. For each k{1,2,3,4,6,9}k\in\{1,2,3,4,6,9\}, there is a dense set of pairs of points which are joined by networks of exactly kk geodesics and of a specific topological form. We find the Hausdorff dimension of the set of pairs joined by each type of network. All other geodesic networks are nowhere dense.Comment: 29 pages, 7 figures, final versio

    Linear Complexity Hexahedral Mesh Generation

    Full text link
    We show that any polyhedron forming a topological ball with an even number of quadrilateral sides can be partitioned into O(n) topological cubes, meeting face to face. The result generalizes to non-simply-connected polyhedra satisfying an additional bipartiteness condition. The same techniques can also be used to reduce the geometric version of the hexahedral mesh generation problem to a finite case analysis amenable to machine solution.Comment: 12 pages, 17 figures. A preliminary version of this paper appeared at the 12th ACM Symp. on Computational Geometry. This is the final version, and will appear in a special issue of Computational Geometry: Theory and Applications for papers from SCG '9

    Hierarchical Riesz bases for Hs(Omega), 1 < s < 5/2

    Get PDF
    On arbitrary polygonal domains OmegasubsetRR2Omega subset RR^2, we construct C1C^1 hierarchical Riesz bases for Sobolev spaces Hs(Omega)H^s(Omega). In contrast to an earlier construction by Dahmen, Oswald, and Shi (1994), our bases will be of Lagrange instead of Hermite type, by which we extend the range of stability from sin(2,frac52)s in (2,frac{5}{2}) to sin(1,frac52)s in (1,frac{5}{2}). Since the latter range includes s=2s=2, with respect to the present basis, the stiffness matrices of fourth-order elliptic problems are uniformly well-conditioned

    Non-crossing frameworks with non-crossing reciprocals

    Full text link
    We study non-crossing frameworks in the plane for which the classical reciprocal on the dual graph is also non-crossing. We give a complete description of the self-stresses on non-crossing frameworks whose reciprocals are non-crossing, in terms of: the types of faces (only pseudo-triangles and pseudo-quadrangles are allowed); the sign patterns in the self-stress; and a geometric condition on the stress vectors at some of the vertices. As in other recent papers where the interplay of non-crossingness and rigidity of straight-line plane graphs is studied, pseudo-triangulations show up as objects of special interest. For example, it is known that all planar Laman circuits can be embedded as a pseudo-triangulation with one non-pointed vertex. We show that if such an embedding is sufficiently generic, then the reciprocal is non-crossing and again a pseudo-triangulation embedding of a planar Laman circuit. For a singular (i.e., non-generic) pseudo-triangulation embedding of a planar Laman circuit, the reciprocal is still non-crossing and a pseudo-triangulation, but its underlying graph may not be a Laman circuit. Moreover, all the pseudo-triangulations which admit a non-crossing reciprocal arise as the reciprocals of such, possibly singular, stresses on pseudo-triangulation embeddings of Laman circuits. All self-stresses on a planar graph correspond to liftings to piece-wise linear surfaces in 3-space. We prove characteristic geometric properties of the lifts of such non-crossing reciprocal pairs.Comment: 32 pages, 23 figure

    Schrijver graphs and projective quadrangulations

    Full text link
    In a recent paper [J. Combin. Theory Ser. B}, 113 (2015), pp. 1-17], the authors have extended the concept of quadrangulation of a surface to higher dimension, and showed that every quadrangulation of the nn-dimensional projective space PnP^n is at least (n+2)(n+2)-chromatic, unless it is bipartite. They conjectured that for any integers k1k\geq 1 and n2k+1n\geq 2k+1, the Schrijver graph SG(n,k)SG(n,k) contains a spanning subgraph which is a quadrangulation of Pn2kP^{n-2k}. The purpose of this paper is to prove the conjecture

    Compatible 4-Holes in Point Sets

    Full text link
    Counting interior-disjoint empty convex polygons in a point set is a typical Erd\H{o}s-Szekeres-type problem. We study this problem for 4-gons. Let PP be a set of nn points in the plane and in general position. A subset QQ of PP, with four points, is called a 44-hole in PP if QQ is in convex position and its convex hull does not contain any point of PP in its interior. Two 4-holes in PP are compatible if their interiors are disjoint. We show that PP contains at least 5n/111\lfloor 5n/11\rfloor {-} 1 pairwise compatible 4-holes. This improves the lower bound of 2(n2)/52\lfloor(n-2)/5\rfloor which is implied by a result of Sakai and Urrutia (2007).Comment: 17 page
    corecore