272,400 research outputs found

    Optimal slit orientation for long multi-object spectroscopic exposures

    Full text link
    Historically, long-slit spectroscopic observations were carried out using the parallactic angle for the slit orientation if slit loss was an important consideration (either to maximize the signal-to-noise or to do spectrophotometry). This requires periodic realignment of the slit position angle as the parallactic angle changes. This is not possible for multi-slit observations where one slit position angle must be chosen for the entire exposure. Common wisdom suggests using the parallactic angle at the meridian (HA=0). In this paper, I examine what the best strategy is for long, multi-slit exposures. I find that in extreme cases (very long exposure time) the best choice is to orient the slit \emph{perpendicular} to the parallactic angle at the meridian. There are two effects to consider: the increasing dispersion with increasing airmass and the changing angle between the parallactic angle and the slit. In the case of \emph{traditional} slit orientation, the two effects amplify each other, thus rendering a significant fraction of the observation useless. Using the perpendicular orientation, the two processes work against each other, thus most of the observation remains useful. I will use, as an example, our 8 hour Lockman Hole observations using the Keck telescope, but generic methods are given to evaluate a particular observation. I also make the tools available to the community.Comment: Accepted by A&A (20/06/2005

    Three-dimensional Quantum Slit Diffraction and Diffraction in Time

    Get PDF
    We study the quantum slit diffraction problem in three dimensions. In the treatment of diffraction of particles by a slit, it is usually assumed that the motion perpendicular to the slit is classical. Here we take into account the effect of the quantum nature of the motion perpendicular to the slit using the Green function approach [18]. We treat the diffraction of a Gaussian wave packet for general boundary conditions on the shutter. The difference between the standard and our three-dimensional slit diffraction models is analogous to the diffraction in time phenomenon introduced in [16]. We derive corrections to the standard formula for the diffraction pattern, and we point out situations in which this might be observable. In particular, we discuss the diffraction in space and time in the presence of gravity

    Dual acting slit control mechanism

    Get PDF
    A dual acting control system for mass spectrometers is described, which permits adjustment of the collimating slit width and centering of the collimating slit while using only one vacuum penetration. Coaxial shafts, each with independent vacuum bellows are used to independently move the entire collimating assembly or to adjust the slit dimension through a parallelogram linkage

    Quantum theory of light diffraction

    Full text link
    At present, the theory of light diffraction only has the simple wave-optical approach. In this paper, we study light diffraction with the approach of relativistic quantum theory. We find that the slit length, slit width, slit thickness and wave-length of light have affected to the diffraction intensity and form of diffraction pattern. However, the effect of slit thickness on the diffraction pattern can not be explained by wave-optical approach, and it can be explained in quantum theory. We compare the theoretical results with single and multiple slits experiment data, and find the theoretical results are accordance with the experiment data. Otherwise, we give some theory prediction. We think all the new prediction will be tested by the light diffraction experiment.Comment: 10 page

    Requirement for Slit-1 and Robo-2 in zonal segregation of olfactory sensory neuron axons in the main olfactory bulb

    Get PDF
    The formation of precise stereotypic connections in sensory systems is critical for the ability to detect and process signals from the environment. In the olfactory system, olfactory sensory neurons (OSNs) project axons to spatially defined glomeruli within the olfactory bulb (OB). A spatial relationship exists between the location of OSNs within the olfactory epithelium (OE) and their glomerular targets along the dorsoventral axis in the OB. The molecular mechanisms underlying the zonal segregation of OSN axons along the dorsoventral axis of the OB are poorly understood. Using robo-2/ (roundabout) and slit-1/ mice, we examined the role of the Slit family of axon guidance cues in the targeting of OSN axons during development. We show that a subset of OSN axons that normally project to the dorsal region of the OB mistarget and form glomeruli in the ventral region in robo-2/ and slit-1/ mice. In addition, we show that the Slit receptor, Robo-2, is expressed in OSNs in a high dorsomedial to low ventrolateral gradient across the OE and that Slit-1 and Slit-3 are expressed in the ventral region of the OB. These results indicate that the dorsal-to-ventral segregation of OSN axons are not solely defined by the location of OSNs within the OE but also relies on axon guidance cues
    corecore