1,965 research outputs found

    Modern Control Approaches for a Wind Energy Conversion System based on a Permanent Magnet Synchronous Generator (PMSG) Fed by a Matrix Converter

    Get PDF
    This “paper proposes a super-twisting adaptive Control Approaches for a Wind Energy Conversion System Based on a Permanent Magnet Synchronous Generator (PMSG) Fed by a matrix sliding mode for tracking the maximum power point of wind energy conversion systems using permanent magnet synchronous generators (PMSGs). As the adaptive control algorithm employed retains the robustness properties of classical wind energy conversion system control methods when perturbations and parameter uncertainties are present, it can be considered an effective solution; at the same time, it reduces chattering by adjusting gain and generating second-order adaptive control methods. The Egyptian power system (EPS), a three-zone interconnected microgrid (MG), and a single machine linked to the grid are only a few examples of the power systems for which this article introduces the concept of direct adaptive control (SMIB).The goal of our work is to maximize the captured power by solving a multi-input multi-output tracking control problem. In the presence of variations in stator resistance, stator inductance, and magnetic flux linkage, simulation results are presented using real wind speed data and discussed for the proposed controller and four other sliding mode control solutions for the same problem. The proposed controller achieves the best trade-off between tracking performance and chattering reduction among the five considered solutions: compared to a standard sliding mode control algorithm, it reduces chattering by two to five orders of magnitude, and steadystate errors on PMSG rotor velocity by one order of magnitude”. The purpose of this article is to examine wind turbine control system techniques and controller trends related to permanent magnet synchronous generators. The article presents an overview of the most popular control strategies for PMSG wind power conversion systems. There are several kinds of nonlinear sliding modes, such as direct power, backstepping, and predictive currents. To determine the performance of each control under variable wind conditions, a description of each control is presented, followed by a simulation performed in MATLAB /Simulink. This simulation evaluates the performance of each control in terms of reference tracking, response times, stability, and signal quality. Finally, this work was concluded with a comparison of the four controls to gain a better understanding of their effects. “Moreover, it reduces the above-mentioned steady-state error by four orders of magnitude compared to a previously-proposed linear quadratic regulator based integral sliding mode control law.  A dynamic model is simulated under both variable step and random wind speeds using the DEV-C++ software, and the results are plotted using MATLAB. The obtained results demonstrate the robustness of the proposed controller in spite of the presence of different uncertainties when compared to the classical direct torque control technique

    Experimental Validation of a Marine Current Turbine Simulator: Application to a Permanent Magnet Synchronous Generator-Based System Second-Order Sliding Mode Control

    Get PDF
    This paper deals with the experimental validation of a Matlab-Simulink simulation tool of marine current turbine (MCT) systems. The developed simulator is intended to be used as a sizing and site evaluation tool for MCT installations. For that purpose, the simulator is evaluated within the context of speed control of a permanent magnet synchronous generatorbased (PMSG) MCT. To increase the generated power, and therefore the efficiency of an MCT, a nonlinear controller has been proposed. PMSG has been already considered for similar applications, particularly wind turbine systems using mainly PI controllers. However, such kinds of controllers do not adequately handle some of tidal resource characteristics such as turbulence and swell effects. Moreover, PMSG parameter variations should be accounted for. Therefore, a robust nonlinear control strategy, namely second-order sliding mode control, is proposed. The proposed control strategy is inserted in the simulator that accounts for the resource and the marine turbine models. Simulations using tidal current data from Raz de Sein (Brittany, France) and experiments on a 7.5-kW real-time simulator are carried out for the validation of the simulator.Thèse financée par Brest Métropole Océan

    Experimental Validation of a Marine Current Turbine Simulator: Application to a Permanent Magnet Synchronous Generator-Based System Second-Order Sliding Mode Control

    Get PDF
    This paper deals with the experimental validation of a Matlab-Simulink simulation tool of marine current turbine (MCT) systems. The developed simulator is intended to be used as a sizing and site evaluation tool for MCT installations. For that purpose, the simulator is evaluated within the context of speed control of a permanent magnet synchronous generatorbased (PMSG) MCT. To increase the generated power, and therefore the efficiency of an MCT, a nonlinear controller has been proposed. PMSG has been already considered for similar applications, particularly wind turbine systems using mainly PI controllers. However, such kinds of controllers do not adequately handle some of tidal resource characteristics such as turbulence and swell effects. Moreover, PMSG parameter variations should be accounted for. Therefore, a robust nonlinear control strategy, namely second-order sliding mode control, is proposed. The proposed control strategy is inserted in the simulator that accounts for the resource and the marine turbine models. Simulations using tidal current data from Raz de Sein (Brittany, France) and experiments on a 7.5-kW real-time simulator are carried out for the validation of the simulator.Thèse financée par Brest Métropole Océan

    High-Order Sliding Mode Control of a Marine Current Turbine Driven Permanent Magnet Synchronous Generator

    Get PDF
    This work is supported by Brest Métropole Océane (BMO) and the European Social Fund (ESF). It is also supported by the GDR SEEDS CNRS N°2994 under the Internal Project HYDROLE. It is done within the framework of the Marine Renewable Energy Commission of the Brittany Maritime Cluster (Pôle Mer Bretagne).International audienceThis paper deals with the speed control of a Permanent Magnet Synchronous Generator (PMSG)-based Marine Current Turbine (MCT). Indeed, to increase the generated power and therefore the efficiency of an MCT, a nonlinear controller has been proposed. PMSG has been already considered for similar applications particularly wind turbine systems using mainly PI controllers. However, such kinds of controllers do not adequately handle some of tidal resource characteristics such as turbulence and swell effects. Indeed, these may decrease the MCT performances. Moreover, PMSG parameter variations should be accounted for. Therefore, a robust nonlinear control strategy, namely high-order sliding mode control, is proposed. The proposed control strategy is inserted in a global simulation tool that accounts for the resource and the marine turbine models. Simulations using tidal current data from the Raz de Sein (Brittany, France), and experiments on a 7.5-kW real-time simulator are carried out for validation purposes

    Addendum of 2MW Wind Turbine to A Power with Directly-Driven Permanent Magnet Generation System

    Get PDF
    In recent years, wind turbine has become an acceptable alternative energy generation, because of the environmental and economic benefits. Notwithstanding more research works still need to be done to reduce wind turbine installation complexity, enhance profitability and reliability especially in developing countries like Nigeria. This paper presents the modeling and analysis of a 2MW variable-speed directly-driven permanent magnet synchronous generator (PMSG), Wind energy conversion system (WECS). The objective is to optimize the power captured from the wind, ensure optimum efficiency for power generation and reduce system hardware count. The mathematical model for the permanent magnet synchronous wind turbine and its power control algorithms are modified by removing the speed sensors. Further, enhancement was achieved by utilizing wind speed forecasts as the starting speed. A modified Field Orientation Control FOC and voltage orientation control VOC scheme were developed for the system using matlab Simulink CAD application. The Simulation results of the model for various changes in wind speed utilizing average wind speed data of Mmaku in Awgu local government area of Enugu state Nigeria. The developed system ability to ‘smoothen’ the power, voltage output and operates at the optimum coefficient of performance between the cut in speed of 3m/s and 12m/s without wind sensor is found to be promising, Key words: wind turbine, variable-speed, permanent magnet, synchronous generator, efficiency DOI: 10.7176/JETP/9-3-04 Publication date:March 31st 201

    New design and comparative study via two techniques for wind energy conversion system

    Get PDF
    Introduction. With the advancements in the variable speed direct drive design and control of wind energy systems, the efficiency and energy capture of these systems is also increasing. As such, numerous linear controllers have also been developed, in literature, for MPPT which use the linear characteristics of the wind turbine system. The major limitation in all of those linear controllers is that they use the linearized model and they cannot deal with the nonlinear dynamics of a system. However, real systems exhibit nonlinear dynamics and a nonlinear controller is required to handle such nonlinearities in real-world systems. The novelty of the proposed work consists in the development of a robust nonlinear controller to ensure maximum power point tracking by handling nonlinearities of a system and making it robust against changing environmental conditions. Purpose. In the beginning, sliding mode control has been considered as one of the most powerful control techniques, this is due to the simplicity of its implementation and robustness compared to uncertainties of the system and external disturbances. Unfortunately, this type of controller suffers from a major disadvantage, that is, the phenomenon of chattering. Methods. So in this paper and in order to eliminate this phenomenon, a novel non-linear control algorithm based on a synergetic controller is proposed. The objective of this control is to maximize the power extraction of a variable speed wind energy conversion system compared to sliding mode control by eliminating the phenomenon of chattering and have a good power quality by fixing the power coefficient at its maximum value and the Tip Speed Ratio maintained at its optimum value. Results. The performance of the proposed nonlinear controllers has been validated in MATLAB/Simulink environment. The simulation results show the effectiveness of the proposed scheme, suppression of the chattering phenomenon and robustness of the proposed controller compared to the sliding mode control law.Вступ. З досягненнями у проектуванні та керуванні вітряними енергосистемами з регульованою швидкістю, зростають також ефективність та захоплення енергії цих систем. Так, в літературі також розроблено численні лінійні контролери для відстеження точки максимальної потужності, які використовують лінійні характеристики системи з вітряними турбінами. Основним обмеженням у всіх цих лінійних контролерах є те, що вони використовують лінеаризовану модель і не можуть мати справу з нелінійною динамікою системи. Однак реальні системи демонструють нелінійну динаміку, і для обробки таких нелінійностей у реальних системах необхідний нелінійний контролер. Новизна запропонованої роботи полягає у розробці надійного нелінійного контролера для забезпечення відстеження точки максимальної потужності шляхом обробки нелінійності системи та забезпечення її стійкості до змін умов навколишнього середовища. Мета. Спочатку управління ковзним режимом вважалося одним з найпотужніших методів управління, що пов’язано з простотою його реалізації та надійністю порівняно з невизначеністю системи та зовнішніми збуреннями. На жаль, цей тип контролера страждає від головного недоліку, а саме явища вібрування. Методи. Тому у цій роботі з метою усунення цього явища пропонується новий нелінійний алгоритм управління, заснований на синергетичному контролері. Завдання цього контролю – максимізувати відбір потужності системи перетворення енергії вітру зі змінною швидкістю порівняно із регулюванням ковзного режиму, усуваючи явище вібрування, і мати хорошу якість енергії, фіксуючи коефіцієнт потужності на його максимальному значенні та підтримуючи кінцевий коефіцієнт швидкості на його оптимальному значенні. Результати. Ефективність запропонованих нелінійних контролерів перевірена в середовищі MATLAB/Simulink. Результати моделювання показують ефективність запропонованої схеми, придушення явища вібрування та стійкість запропонованого контролера порівняно із законом управління ковзного режиму

    Performance Enhancement of a Variable Speed Permanent Magnet Synchronous Generator Used for Renewable Energy Application

    Get PDF
    The paper aims to develop an improved control system to enhance the dynamics of a permanent magnet synchronous generator (PMSG) operating at varying speeds. The generator dynamics are evaluated based on lowing current, power, and torque ripples to validate the effectiveness of the proposed control system. The adopted controllers include the model predictive power control (MPPC), model predictive torque control (MPTC), and the designed predictive voltage control (PVC). MPPC seeks to regulate the active and reactive power, while MPTC regulates the torque and flux. MPPC and MPTC have several drawbacks, like high ripple, high load commutation, and using a weighting factor in their cost functions. The methodology of designed predictive voltage comes to eliminate these drawbacks by managing the direct voltage by utilizing the deadbeat and finite control set FCS principle, which uses a simple cost function without needing any weighting factor for equilibrium error issues. The results demonstrate several advantages of the proposed PVC technique, including faster dynamic response, simplified control structure, reduced ripples, lower current harmonics, and decreased computational requirements when compared to the MPPC and MPTC methods. Additionally, the study considers the integration of blade pitch angle and maximum power point tracking (MPPT) controls, which limit wind energy utilization when the generator speed exceeds its rated speed and maximize wind energy extraction during wind scarcity. In summary, the proposed PVC enhanced control system exhibits superior performance in terms of dynamic response, control simplicity, current quality, and computational efficiency when compared to alternative methods

    Intelligent approach on sensorless control of permanent magnet synchronous generator

    Get PDF
    In this paper, a standalone permanent magnet synchronous generator (PMSG) system is designed to generate power at maximum power point (MPP). The variable speed operation of wind energy conversion system consists of PMSG, controlled rectifier and voltage source inverter co to the load. Proportional integral (PI), sliding mode (SM), and feed forward neural network (FFNN) control strategies are applied in field oriented control (FOC) at generator side converter. A comparative study on power generated at maximum power point (MPP) is done with these controllers using simulation. Hill climb search (HCS) method is applied to attain MPP. Load side inverter control strategy involves the PI and SM controllers in order to maintain the unity power factor and to control the active and reactive power for nonlinear load. The control strategies are modelled and simulated with MATLAB/Simulink. The effectiveness of proposed control method is demonstrated using simulation results

    Simulation of Power Control of a Wind Turbine Permanent Magnet Synchronous Generator System

    Get PDF
    This thesis presents a control system for a 2MW direct-drive permanent magnet synchronous generator wind turbine system with the objectives to capture the optimal power from the wind and ensure a maximum efficiency for this system. Moreover, in order to eliminate the electrical speed sensor mounted on the rotor shaft of the PMSG to reduce the system hardware complexity and improve the reliability of the system, a sliding mode observer based PM rotor position and speed sensorless control algorithm is presented here. The mathematical models for the wind turbine and the permanent magnet synchronous machine are first given in this thesis, and then optimal power control algorithms for this system are presented. The optimal tip speed ratio based maximum power point tracking control is utilized to ensure the maximum power capture for the system. The field oriented control algorithm is applied to control the speed of the PMSG with the reference of the wind speed. In the grid-side converter control, voltage oriented control algorithm is applied to regulate the active and reactive power injected into the power grid. What is more, sliding mode observer based sensorless control algorithm is also presented here. The simulation study is carried out based on MATLAB/Simulink to validate the proposed system control algorithms

    Genetic algorithm optimized robust nonlinear observer for a wind turbine system based on permanent magnet synchronous generator

    Get PDF
    © 2022 ISA. Published by Elsevier Ltd. All rights reserved. This is the accepted manuscript version of an article which has been published in final form at https://doi.org/10.1016/j.isatra.2022.02.004This paper presents an optimal control scheme for a Permanent Magnet Synchronous Generator (PMSG) coupled to a wind turbine operating without a position sensor. This sensorless scheme includes two observers: The first observer uses the flux to estimate the speed. However, an increase in the temperature or a degradation of the permanent magnet characteristics will result in a demagnetization of the machine causing a drop in the flux. The second observer is therefore used to estimate these changes in the flux from the speed and guaranties the stability of the system. This structure leads to a better exchange of information between the two observers, eliminates the problem of encoder and compensates for the demagnetization problem. To improve the precision of the speed estimator, the gain of the non-linear observer is optimized using Genetic Algorithm (GA) and the speed is obtained from a modified Phase Locked Loop (PLL) method using an optimized Sliding Mode Controller (SMC). Furthermore, to enhance the convergence speed of this observer scheme and improve the performance of the system a Fast Super Twisting Sliding Mode Control (FSTSMC) is introduced to reinforce the SMC strategy. A series of simulations are presented to show the effectiveness and robustness of proposed observer scheme.Peer reviewe
    corecore