1,072 research outputs found

    State-Feedback Output Tracking Via a Novel Optimal-Sliding Mode Control

    Get PDF
    This chapter describes a new framework for the design of a novel suboptimal state-feedback-sliding mode control for output tracking while H2/H∞ performances of the closed-loop system are under control. In contrast to most of the current sliding surface design schemes, in this new framework, the level of control effort required to maintain sliding is penalized. The proposed method for the design of optimal-sliding mode control is carried out in two stages. In the first stage, a state-feedback gain is derived using a linear matrix inequality (LMI)-based scheme that can assign a number of the closed-loop eigenvalues to a known value while satisfying performance specifications and ensuring that all the closed-loop poles are located in a preselected subregion. The sliding function matrix related to the particular state feedback derived in the first stage is obtained in the second stage by using one of the two different methods developed for this goal. We present a numerical example to demonstrate the remarkable performance of the proposed scheme

    Decentralized sliding mode control and estimation for large-scale systems

    Get PDF
    This thesis concerns the development of an approach of decentralised robust control and estimation for large scale systems (LSSs) using robust sliding mode control (SMC) and sliding mode observers (SMO) theory based on a linear matrix inequality (LMI) approach. A complete theory of decentralized first order sliding mode theory is developed. The main developments proposed in this thesis are: The novel development of an LMI approach to decentralized state feedback SMC. The proposed strategy has good ability in combination with other robust methods to fulfill specific performance and robustness requirements. The development of output based SMC for large scale systems (LSSs). Three types of novel decentralized output feedback SMC methods have been developed using LMI design tools. In contrast to more conventional approaches to SMC design the use of some complicated transformations have been obviated. A decentralized approach to SMO theory has been developed focused on the Walcott-Żak SMO combined with LMI tools. A derivation for bounds applicable to the estimation error for decentralized systems has been given that involves unknown subsystem interactions and modeling uncertainty. Strategies for both actuator and sensor fault estimation using decentralized SMO are discussed.The thesis also provides a case study of the SMC and SMO concepts applied to a non-linear annealing furnace system modelderived from a distributed parameter (partial differential equation) thermal system. The study commences with a lumped system decentralised representation of the furnace derived from the partial differential equations. The SMO and SMC methods derived in the thesis are applied to this lumped parameter furnace model. Results are given demonstrating the validity of the methods proposed and showing a good potential for a valuable practical implementation of fault tolerant control based on furnace temperature sensor faults

    Arbitrary Pole Placement with Sliding Mode Control

    Get PDF
    This paper considers the problem of placing all the poles arbitrarily for a linear time-invariant plant with the linear part 00 sliding mode control. We solve this problem in two ways. In the first approach, we design a sliding mode control by specifying the desired pole locations. The closed-loop system under this control law has all eigenvalues at the desired places. In the second approach, the sliding mode control is designed from a given state feedback gain so that all the poles of the closed-loop system are placed at the same location as that of the state feedback controller. Here, we provide a necessary and sufficient condition for the existence of a linear gain using the sliding mode control to achieve the desired pole assignment. This condition is always fulfilled for the single input case whereas it is only applicable for certain multi-input scenarios that meet the conditions stated in the paper. In both the approaches, one can place the closed-loop poles with the proposed sliding mode control at any arbitrary location in the left half of the complex plane, unlike with traditional design, where m poles are at the origin with m being the number of control inputs. A numerical example illustrates the proposed design methodology for sliding mode control

    LMI-based multiobjective integral sliding mode control for rotary inverted pendulum system under load variations

    Get PDF
    This paper presents a multiobjective integral sliding mode controller (ISMC) for a rotary inverted pendulum system under the influence of varying load. Firstly, the nonlinear system is approximated to facilitate the desired control design via extended linearization and deterministic approach. By using both of these techniques, the nonlinear system is formulated into a nonlinear state-space representation where the uncertainties are retained in the model. Next, the design objectives are formulated into linear matrix inequalities (LMI) which are then solved efficiently through convex optimization algorithms. With proper selection variables, numbers of the decision variables for LMIs are reduced. Hence, it will reduce the numerical burden and believes the calculated values more viable in practice. Finally, simulation works are conducted and comparison is made between the proposed controller, such as normal ISMC and LQR. The simulation results illustrate the effectiveness of the proposed controller and the performance is evaluated through integral of absolute-value error (IAE) performance index

    Observer based active fault tolerant control of descriptor systems

    Get PDF
    The active fault tolerant control (AFTC) uses the information provided by fault detection and fault diagnosis (FDD) or fault estimation (FE) systems offering an opportunity to improve the safety, reliability and survivability for complex modern systems. However, in the majority of the literature the roles of FDD/FE and reconfigurable control are described as separate design issues often using a standard state space (i.e. non-descriptor) system model approach. These separate FDD/FE and reconfigurable control designs may not achieve desired stability and robustness performance when combined within a closed-loop system.This work describes a new approach to the integration of FE and fault compensation as a form of AFTC within the context of a descriptor system rather than standard state space system. The proposed descriptor system approach has an integrated controller and observer design strategy offering better design flexibility compared with the equivalent approach using a standard state space system. An extended state observer (ESO) is developed to achieve state and fault estimation based on a joint linear matrix inequality (LMI) approach to pole-placement and H∞ optimization to minimize the effects of bounded exogenous disturbance and modelling uncertainty. A novel proportional derivative (PD)-ESO is introduced to achieve enhanced estimation performance, making use of the additional derivative gain. The proposed approaches are evaluated using a common numerical example adapted from the recent literature and the simulation results demonstrate clearly the feasibility and power of the integrated estimation and control AFTC strategy. The proposed AFTC design strategy is extended to an LPV descriptor system framework as a way of dealing with the robustness and stability of the system with bounded parameter variations arising from the non-linear system, where a numerical example demonstrates the feasibility of the use of the PD-ESO for FE and compensation integrated within the AFTC system.A non-linear offshore wind turbine benchmark system is studied as an application of the proposed design strategy. The proposed AFTC scheme uses the existing industry standard wind turbine generator angular speed reference control system as a “baseline” control within the AFTC scheme. The simulation results demonstrate the added value of the new AFTC system in terms of good fault tolerance properties, compared with the existing baseline system

    Variable structure control with chattering reduction of a generalized T-S model

    Get PDF
    In this paper, a fuzzy logic controller (FLC) based variable structure control (VSC) is presented. The main objective is to obtain an improved performance of highly non-linear unstable systems. New functions for chattering reduction and error convergence without sacrificing invariant properties are proposed. The main feature of the proposed method is that the switching function is added as an additional fuzzy variable and will be introduced in the premise part of the fuzzy rules; together with the state variables. In this work, a tuning of the well known weighting parameters approach is proposed to optimize local and global approximation and modelling capability of the Takagi-Sugeno (T-S) fuzzy model to improve the choice of the performance index and minimize it. The main problem encountered is that the T-S identification method can not be applied when the membership functions are overlapped by pairs. This in turn restricts the application of the T-S method because this type of membership function has been widely used in control applications. The approach developed here can be considered as a generalized version of the T-S method. An inverted pendulum mounted on a cart is chosen to evaluate the robustness, effectiveness, accuracy and remarkable performance of the proposed estimation approach in comparison with the original T-S model. Simulation results indicate the potential, simplicity and generality of the estimation method and the robustness of the chattering reduction algorithm. In this paper, we prove that the proposed estimation algorithm converge the very fast, thereby making it very practical to use. The application of the proposed FLC-VSC shows that both alleviation of chattering and robust performance are achieved

    PAC: A Novel Self-Adaptive Neuro-Fuzzy Controller for Micro Aerial Vehicles

    Full text link
    There exists an increasing demand for a flexible and computationally efficient controller for micro aerial vehicles (MAVs) due to a high degree of environmental perturbations. In this work, an evolving neuro-fuzzy controller, namely Parsimonious Controller (PAC) is proposed. It features fewer network parameters than conventional approaches due to the absence of rule premise parameters. PAC is built upon a recently developed evolving neuro-fuzzy system known as parsimonious learning machine (PALM) and adopts new rule growing and pruning modules derived from the approximation of bias and variance. These rule adaptation methods have no reliance on user-defined thresholds, thereby increasing the PAC's autonomy for real-time deployment. PAC adapts the consequent parameters with the sliding mode control (SMC) theory in the single-pass fashion. The boundedness and convergence of the closed-loop control system's tracking error and the controller's consequent parameters are confirmed by utilizing the LaSalle-Yoshizawa theorem. Lastly, the controller's efficacy is evaluated by observing various trajectory tracking performance from a bio-inspired flapping-wing micro aerial vehicle (BI-FWMAV) and a rotary wing micro aerial vehicle called hexacopter. Furthermore, it is compared to three distinctive controllers. Our PAC outperforms the linear PID controller and feed-forward neural network (FFNN) based nonlinear adaptive controller. Compared to its predecessor, G-controller, the tracking accuracy is comparable, but the PAC incurs significantly fewer parameters to attain similar or better performance than the G-controller.Comment: This paper has been accepted for publication in Information Science Journal 201

    A framework for optimal actuator/sensor selection in a control system

    Full text link
    © 2017, © 2017 Informa UK Limited, trading as Taylor & Francis Group. When dealing with large-scale systems, manual selection of a subset of components (sensors/actuators), or equivalently identification of a favourable structure for the controller, that guarantees a certain closed-loop performance, is not very feasible. This paper is dedicated to the problem of concurrent optimal selection of actuators/sensors which can equivalently be considered as the structure identification for the controller. In the context of a multi-channel H 2 dynamic output feedback controller synthesis, we formulate and analyse a framework in which we incorporate two extra terms for penalising the number of actuators and sensors into the variational formulations of controller synthesis problems in order to induce a favourable controller structure. We then develop an explicit scheme as well as an iterative process for the purpose of dealing with the multi-objective problem of controller structure and control law co-design. It is also stressed that the immediate application of the proposed approach lies within the fault accommodation stage of a fault tolerant control scheme. By two numerical examples, we demonstrate the remarkable performance of the proposed approach

    Nondeterministic hybrid dynamical systems

    Get PDF
    This thesis is concerned with the analysis, control and identification of hybrid dynamical systems. The main focus is on a particular class of hybrid systems consisting of linear subsystems. The discrete dynamic, i.e., the change between subsystems, is unknown or nondeterministic and cannot be influenced, i.e. controlled, directly. However changes in the discrete dynamic can be detected immediately, such that the current dynamic (subsystem) is known. In order to motivate the study of hybrid systems and show the merits of hybrid control theory, an example is given. It is shown that real world systems like Anti Locking Brakes (ABS) are naturally modelled by such a class of linear hybrids systems. It is shown that purely continuous feedback is not suitable since it cannot achieve maximum braking performance. A hybrid control strategy, which overcomes this problem, is presented. For this class of linear hybrid system with unknown discrete dynamic, a framework for robust control is established. The analysis methodology developed gives a robustness radius such that the stability under parameter variations can be analysed. The controller synthesis procedure is illustrated in a practical example where the control for an active suspension of a car is designed. Optimal control for this class of hybrid system is introduced. It is shows how a control law is obtained which minimises a quadratic performance index. The synthesis procedure is stated in terms of a convex optimisation problem using linear matrix inequalities (LMI). The solution of the LMI not only returns the controller but also the performance bound. Since the proposed controller structures require knowledge of the continuous state, an observer design is proposed. It is shown that the estimation error converges quadratically while minimising the covariance of the estimation error. This is similar to the Kalman filter for discrete or continuous time systems. Further, we show that the synthesis of the observer can be cast into an LMI, which conveniently solves the synthesis problem

    Intelligent controllers for vechicle suspension system using magnetorheological damper

    Get PDF
    Semi-active suspension control with magnetorheological (MR) damper is one of the most fascinating systems being studied in improving the vehicle ride comfort. This study aims to investigate the development of intelligent controllers for vehicle suspension system using MR damper, namely, the proportional-integral-derivative (PID) and fuzzy logic (FL) controllers optimized using particle swarm optimization (PSO), firefly algorithm (FA) and advanced firefly algorithm (AFA). Since the conventional optimization method always has a problem in identifying the optimum values and it is time consuming, the evolutionary algorithm is the best approach in replacing the conventional method as it is very efficient and consistent in exploring the values for every single space. The PSO and FA are among of the evolutionary algorithms which have been studied in this research. Nevertheless, the weakness of FA such as getting trapped into several local minima is an attractive area that has been focused more as a possible improvement during the evolutionary process. Thus, a new algorithm based on the improvement of the original FA was introduced to improve the solution quality of the FA. This algorithm is called advanced firefly algorithm. A parametric modelling technique known as Spencer model was proposed and employed to compute the dynamic behaviour of the MR damper system. The Spencer model was experimentally validated and conducted to capture the behaviour of the Lord RD-1005-3 MR damper with the same excitation input. A simulation of a semi-active suspension system was developed within MATLAB Simulink environment. The effectiveness of all control schemes were investigated in two major issues, namely the ability of the controller to reject the unwanted motion of the vehicle and to overcome the damping constraints. The result indicates that, the PID-AFA control scheme is more superior as compared to the PID-PSO, PID-FA, FL-PSO, FL-FA, FL-AFA and passive system with up to 27.1% and 19.1% reduction for sprung mass acceleration and sprung mass displacement, respectively. Finally, the performance of the proposed intelligent control schemes which are implemented experimentally on the developed quarter vehicle suspension test rig shows a good agreement with the results of the simulation study. The proposed control scheme of PID-AFA has reduced the sprung mass acceleration and sprung mass displacement over the FL-AFA and passive system up to 28.21% and 16.9%, respectively
    corecore