2,019 research outputs found

    Asymptotics for sliced average variance estimation

    Full text link
    In this paper, we systematically study the consistency of sliced average variance estimation (SAVE). The findings reveal that when the response is continuous, the asymptotic behavior of SAVE is rather different from that of sliced inverse regression (SIR). SIR can achieve n\sqrt{n} consistency even when each slice contains only two data points. However, SAVE cannot be n\sqrt{n} consistent and it even turns out to be not consistent when each slice contains a fixed number of data points that do not depend on n, where n is the sample size. These results theoretically confirm the notion that SAVE is more sensitive to the number of slices than SIR. Taking this into account, a bias correction is recommended in order to allow SAVE to be n\sqrt{n} consistent. In contrast, when the response is discrete and takes finite values, n\sqrt{n} consistency can be achieved. Therefore, an approximation through discretization, which is commonly used in practice, is studied. A simulation study is carried out for the purposes of illustration.Comment: Published at http://dx.doi.org/10.1214/009053606000001091 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Estimating sufficient reductions of the predictors in abundant high-dimensional regressions

    Get PDF
    We study the asymptotic behavior of a class of methods for sufficient dimension reduction in high-dimension regressions, as the sample size and number of predictors grow in various alignments. It is demonstrated that these methods are consistent in a variety of settings, particularly in abundant regressions where most predictors contribute some information on the response, and oracle rates are possible. Simulation results are presented to support the theoretical conclusion.Comment: Published in at http://dx.doi.org/10.1214/11-AOS962 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore