3,815 research outputs found

    Test Case Purification for Improving Fault Localization

    Get PDF
    Finding and fixing bugs are time-consuming activities in software development. Spectrum-based fault localization aims to identify the faulty position in source code based on the execution trace of test cases. Failing test cases and their assertions form test oracles for the failing behavior of the system under analysis. In this paper, we propose a novel concept of spectrum driven test case purification for improving fault localization. The goal of test case purification is to separate existing test cases into small fractions (called purified test cases) and to enhance the test oracles to further localize faults. Combining with an original fault localization technique (e.g., Tarantula), test case purification results in better ranking the program statements. Our experiments on 1800 faults in six open-source Java programs show that test case purification can effectively improve existing fault localization techniques

    Locating Faults with Program Slicing: An Empirical Analysis

    Get PDF
    Statistical fault localization is an easily deployed technique for quickly determining candidates for faulty code locations. If a human programmer has to search the fault beyond the top candidate locations, though, more traditional techniques of following dependencies along dynamic slices may be better suited. In a large study of 457 bugs (369 single faults and 88 multiple faults) in 46 open source C programs, we compare the effectiveness of statistical fault localization against dynamic slicing. For single faults, we find that dynamic slicing was eight percentage points more effective than the best performing statistical debugging formula; for 66% of the bugs, dynamic slicing finds the fault earlier than the best performing statistical debugging formula. In our evaluation, dynamic slicing is more effective for programs with single fault, but statistical debugging performs better on multiple faults. Best results, however, are obtained by a hybrid approach: If programmers first examine at most the top five most suspicious locations from statistical debugging, and then switch to dynamic slices, on average, they will need to examine 15% (30 lines) of the code. These findings hold for 18 most effective statistical debugging formulas and our results are independent of the number of faults (i.e. single or multiple faults) and error type (i.e. artificial or real errors)
    corecore