52 research outputs found

    Physical Layer Secret Key Agreement Using One-Bit Quantization and Low-Density Parity-Check Codes

    Get PDF
    Physical layer approaches for generating secret encryption keys for wireless systems using channel information have attracted increased interest from researchers in recent years. This paper presents a new approach for calculating log-likelihood ratios (LLRs) for secret key generation that is based on one-bit quantization of channel measurements and the difference between channel estimates at legitimate reciprocal nodes. The studied secret key agreement approach, which implements advantage distillation along with information reconciliation using Slepian-Wolf low-density parity-check (LDPC) codes, is discussed and illustrated with numerical results obtained from simulations. These results show the probability of bit disagreement for keys generated using the proposed LLR calculations compared with alternative LLR calculation methods for key generation based on channel state information. The proposed LLR calculations are shown to be an improvement to the studied approach of physical layer secret key agreement

    Physical Layer Secret Key Agreement Using One-Bit Quantization and Low-Density Parity-Check Codes

    Full text link
    Physical layer approaches for generating secret encryption keys for wireless systems using channel information have attracted increased interest from researchers in recent years. This paper presents a new approach for calculating log-likelihood ratios (LLRs) for secret key generation that is based on one-bit quantization of channel measurements and the difference between channel estimates at legitimate reciprocal nodes. The studied secret key agreement approach, which implements advantage distillation along with information reconciliation using Slepian-Wolf low-density parity-check (LDPC) codes, is discussed and illustrated with numerical results obtained from simulations. These results show the probability of bit disagreement for keys generated using the proposed LLR calculations compared with alternative LLR calculation methods for key generation based on channel state information. The proposed LLR calculations are shown to be an improvement to the studied approach of physical layer secret key agreement.Comment: Officially Published on ODU Digital Commons at https://digitalcommons.odu.edu/ece_etds/1

    A Novel Hybrid Protocol and Code Related Information Reconciliation Scheme for Physical Layer Secret Key Generation

    Get PDF
    Wireless networks are vulnerable to various attacks due to their open nature, making them susceptible to eavesdropping and other security threats. Eavesdropping attack takes place at the physical layer. Traditional wireless network security relies on cryptographic techniques to secure data transmissions. However, these techniques may not be suitable for all scenarios, especially in resource-constrained environments such as wireless sensor networks and adhoc networks. In these networks having limited power resources, generating cryptographic keys between mobile entities can be challenging. Also, the cryptographic keys are computationally complex and require key management infrastructure. Physical Layer Key Generation (PLKG) is an emerging solution to address these challenges. It establishes secure communication between two users by taking advantage of the wireless channel's inherent features. PLKG process involves channel probing, quantization, information reconciliation (IR) and privacy amplification to generate symmetric secret key. The researchers have used various PLKG techniques to get the secret key, sTop of Form till they face problems in the IR scheme to obtain symmetric keys between the users who share the same channel for communication. Both the code based and protocol based methods proposed in the literature have advantages and limitations related to their performance parameters such as information leakage, interaction delay and computation complexity. This research work proposes a novel IR mechanism that combines the protocol and code-based error correction methods to obtain reduced Bit Mismatch Rate (BMR), reduced information leakage, reduced interaction delay, and reduced computational time to enhance physical layer secret key's quality. In the proposed research work, the channel samples are generated using the Received Signal Strength (RSS) and Channel Impulse Response (CIR) parameters. These samples are quantized using Vector Quantization with Affinity Propagation Clustering (VQAPC) method to generate the preliminary key. The samples collected by the two users who wish to communicate, (for example Alice and Bob) will be different due to noise in the channel and hardware limitations. Hence their preliminary keys will be different. Removing this discrepancy between Bob's and Alice's initial keys, using novel Hybrid Protocol and Code related Information Reconciliation (HPC-IR) scheme to generate error corrected key, is the most important contribution of this research work. This key is further encoded by the MD5 hash function to generate a final secret key for exchanging information between two users over the wireless channel. It is observed that the proposed HPC-IR scheme achieves BMR of 19.4%, information leakage is 0.002, interaction delay is 0.001 seconds and computation time is 0.02 seconds

    Coexistence and Secure Communication in Wireless Networks

    Get PDF
    In a wireless system, transmitted electromagnetic waves can propagate in all directions and can be received by other users in the system. The signals received by unintended receivers pose two problems; increased interference causing lower system throughput or successful decoding of the information which removes secrecy of the communication. Radio frequency spectrum is a scarce resource and it is allocated by technologies already in use. As a result, many communication systems use the spectrum opportunistically whenever it is available in cognitive radio setting or use unlicensed bands. Hence, efficient use of spectrum by sharing users is crucial to increase maximize system throughput. In addition, secrecy of a wireless communication system is traditionally provided by computational complexity of cryptography techniques employed. However, cryptography systems depend on either a random secret key generation mechanism or a trusted key distribution system. Recent developments in the wireless communication area provided a solution to both key generation and distribution problem via exploiting randomness of the wireless channel unconditional to the computational complexity. In this dissertation, we propose solutions to the problems discussed. For spectrum sharing, we present a detailed analysis of challenges of efficient spectrum sharing without a central enforcing mechanism, provide insight to already existing power control algorithms and propose a novel non-greedy power allocation algorithm. Numerical simulations show that the proposed algorithm increases system throughput more than greedy algorithms and can use available spectrum to the fullest, yet it is robust to the presence of greedy users. For secrecy, we propose a practical and fast system for random secret key generation and reconciliation. We extend the proposed system to multiple-input-multiple-output systems and increase security via role reversal of the nodes while making it quicker by pre-encoding procedure. Information theory calculation and numerical simulations demonstrates that the proposed system provides a secure channel for legitimate users in the presence of a passive eavesdropper

    Multi-factor Physical Layer Security Authentication in Short Blocklength Communication

    Full text link
    Lightweight and low latency security schemes at the physical layer that have recently attracted a lot of attention include: (i) physical unclonable functions (PUFs), (ii) localization based authentication, and, (iii) secret key generation (SKG) from wireless fading coefficients. In this paper, we focus on short blocklengths and propose a fast, privacy preserving, multi-factor authentication protocol that uniquely combines PUFs, proximity estimation and SKG. We focus on delay constrained applications and demonstrate the performance of the SKG scheme in the short blocklength by providing a numerical comparison of three families of channel codes, including half rate low density parity check codes (LDPC), Bose Chaudhuri Hocquenghem (BCH), and, Polar Slepian Wolf codes for n=512, 1024. The SKG keys are incorporated in a zero-round-trip-time resumption protocol for fast re-authentication. All schemes of the proposed mutual authentication protocol are shown to be secure through formal proofs using Burrows, Abadi and Needham (BAN) and Mao and Boyd (MB) logic as well as the Tamarin-prover

    Information Reconciliation for High-Dimensional Quantum Key Distribution using Nonbinary LDPC codes

    Full text link
    Information Reconciliation is an essential part of Quantum Key distribution protocols that closely resembles Slepian-Wolf coding. The application of nonbinary LDPC codes in the Information Reconciliation stage of a high-dimensional discrete-variable Quantum Key Distribution setup is proposed. We model the quantum channel using a qq-ary symmetric channel over which qudits are sent. Node degree distributions optimized via density evolution for the Quantum Key Distribution setting are presented, and we show that codes constructed using these distributions allow for efficient reconciliation of large-alphabet keys.Comment: 5 pages, 1 figure, submitted to International Symposium on Topics in Codin

    Universal Hashing for Information Theoretic Security

    Full text link
    The information theoretic approach to security entails harnessing the correlated randomness available in nature to establish security. It uses tools from information theory and coding and yields provable security, even against an adversary with unbounded computational power. However, the feasibility of this approach in practice depends on the development of efficiently implementable schemes. In this article, we review a special class of practical schemes for information theoretic security that are based on 2-universal hash families. Specific cases of secret key agreement and wiretap coding are considered, and general themes are identified. The scheme presented for wiretap coding is modular and can be implemented easily by including an extra pre-processing layer over the existing transmission codes.Comment: Corrected an error in the proof of Lemma

    Exploiting Channel Diversity in Secret Key Generation from Multipath Fading Randomness

    Full text link
    We design and analyze a method to extract secret keys from the randomness inherent to wireless channels. We study a channel model for multipath wireless channel and exploit the channel diversity in generating secret key bits. We compare the key extraction methods based both on entire channel state information (CSI) and on single channel parameter such as the received signal strength indicators (RSSI). Due to the reduction in the degree-of-freedom when going from CSI to RSSI, the rate of key extraction based on CSI is far higher than that based on RSSI. This suggests that exploiting channel diversity and making CSI information available to higher layers would greatly benefit the secret key generation. We propose a key generation system based on low-density parity-check (LDPC) codes and describe the design and performance of two systems: one based on binary LDPC codes and the other (useful at higher signal-to-noise ratios) based on four-ary LDPC codes
    corecore