405,067 research outputs found

    Sleep During Pregnancy: The nuMoM2b Pregnancy and Sleep Duration and Continuity Study

    Get PDF
    Study Objectives: To characterize sleep duration, timing and continuity measures in pregnancy and their association with key demographic variables. Methods: Multisite prospective cohort study. Women enrolled in the nuMoM2b study (nulliparous women with a singleton gestation) were recruited at the second study visit (16-21 weeks of gestation) to participate in the Sleep Duration and Continuity substudy. Women <18 years of age or with pregestational diabetes or chronic hypertension were excluded from participation. Women wore a wrist activity monitor and completed a sleep log for 7 consecutive days. Time in bed, sleep duration, fragmentation index, sleep efficiency, wake after sleep onset, and sleep midpoint were averaged across valid primary sleep periods for each participant. Results: Valid data were available from 782 women with mean age of 27.3 (5.5) years. Median sleep duration was 7.4 hours. Approximately 27.9% of women had a sleep duration of 9 hours. In multivariable models including age, race/ethnicity, body mass index, insurance status, and recent smoking history, sleep duration was significantly associated with race/ethnicity and insurance status, while time in bed was only associated with insurance status. Sleep continuity measures and sleep midpoint were significantly associated with all covariates in the model, with the exception of age for fragmentation index and smoking for wake after sleep onset. Conclusions: Our results demonstrate the relationship between sleep and important demographic characteristics during pregnancy

    Quantifying sleep architecture dynamics and individual differences using big data and Bayesian networks

    Get PDF
    The pattern of sleep stages across a night (sleep architecture) is influenced by biological, behavioral, and clinical variables. However, traditional measures of sleep architecture such as stage proportions, fail to capture sleep dynamics. Here we quantify the impact of individual differences on the dynamics of sleep architecture and determine which factors or set of factors best predict the next sleep stage from current stage information. We investigated the influence of age, sex, body mass index, time of day, and sleep time on static (e.g. minutes in stage, sleep efficiency) and dynamic measures of sleep architecture (e.g. transition probabilities and stage duration distributions) using a large dataset of 3202 nights from a non-clinical population. Multi-level regressions show that sex effects duration of all Non-Rapid Eye Movement (NREM) stages, and age has a curvilinear relationship for Wake After Sleep Onset (WASO) and slow wave sleep (SWS) minutes. Bayesian network modeling reveals sleep architecture depends on time of day, total sleep time, age and sex, but not BMI. Older adults, and particularly males, have shorter bouts (more fragmentation) of Stage 2, SWS, and they transition less frequently to these stages. Additionally, we showed that the next sleep stage and its duration can be optimally predicted by the prior 2 stages and age. Our results demonstrate the potential benefit of big data and Bayesian network approaches in quantifying static and dynamic architecture of normal sleep

    Emotional Effects of the Duration, Efficiency, and Subjective Quality of Sleep in Healthcare Personnel

    Get PDF
    Considering that both sleep quality and duration are linked to psychological variables, this study analyzed the relationships between sleep components and emotional intelligence and the effects that sleep duration has on stress management and mood in a sample of nurses. The sample was made up of 1073 professionals. Data were collected by the Pittsburgh Sleep Quality Index and the Brief Emotional Intelligence Inventory for Senior Citizens. The results showed that the components of sleep quality were negatively related to stress management and mood. Furthermore, nurses who had short sleep patterns also had low moods and high stress levels. This study emphasizes the importance of subjective sleep quality as a necessary resource for professionals to manage stressful situations and mood and improve their relations with their patients and with each other

    Sociality Affects REM Sleep Episode Duration Under Controlled Laboratory Conditions in the Rock Hyrax, Procavia capensis.

    Get PDF
    The rock hyrax, Procavia capensis, is a highly social, diurnal mammal. In the current study several physiologically measurable parameters of sleep, as well as the accompanying behavior, were recorded continuously from five rock hyraxes, for 72 h under solitary (experimental animal alone in the recording chamber), and social conditions (experimental animal with 1 or 2 additional, non-implanted animals in the recording chamber). The results revealed no significant differences between solitary and social conditions for total sleep times, number of episodes, episode duration or slow wave activity (SWA) for all states examined. The only significant difference observed between social and solitary conditions was the average duration of rapid eye movement (REM) sleep episodes. REM sleep episode duration was on average 20 s and 40 s longer under social conditions daily and during the dark period, respectively. It is hypothesized that the increase in REM sleep episode duration under social conditions could possibly be attributed to improved thermoregulation strategies, however considering the limited sample size and design of the current study further investigations are needed to confirm this finding. Whether the conclusions and the observations made in this study can be generalized to all naturally socially sleeping mammals remains an open question

    Solving the mystery of human sleep schedules one mutation at a time.

    Get PDF
    Sleep behavior remains one of the most enigmatic areas of life. The unanswered questions range from "why do we sleep?" to "how we can improve sleep in today's society?" Identification of mutations responsible for altered circadian regulation of human sleep lead to unique opportunities for probing these territories. In this review, we summarize causative circadian mutations found from familial genetic studies to date. We also describe how these mutations mechanistically affect circadian function and lead to altered sleep behaviors, including shifted or shortening of sleep patterns. In addition, we discuss how the investigation of mutations can not only expand our understanding of the molecular mechanisms regulating the circadian clock and sleep duration, but also bridge the pathways between clock/sleep and other human physiological conditions and ailments such as metabolic regulation and migraine headaches

    Differential Effects of Psychological and Physical Stress on the Sleep Pattern in Rats

    Get PDF
    In the present study, we investigated the acute effects of 2 different kinds of stress, namely physical stress (foot shock) and psychological stress (non-foot shock) induced by the communication box method, on the sleep patterns of rats. The sleep patterns were recorded for 6 h immediately after 1 h of stress. Physical and psychological stress had almost opposite effects on the sleep patterns: In the physical stress group, hourly total rapid eye movement (REM) sleep and total non-REM sleep were significantly inhibited, whereas psychological stress enhanced hourly total REM sleep but not total non-REM sleep. Further results showed that total REM sleep, total non-REM sleep, total sleep and the total number of REM sleep episodes in 5 h were reduced, and that sleep latency was prolonged compared to the control group. On the other hand, in the psychological stress group, the total REM sleep in 5 h was increased significantly due to the prolongation of the average duration of REM sleep episodes and reduced REM sleep latency. In addition, the plasma of corticosterone increased significantly after physical stress but not after psychological stress. These results suggested that the sleep patterns, particularly the patterns of REM sleep following physical and psychological stress, are probably regulated by 2 different pathways.</p
    corecore