162 research outputs found

    Deep Slap Fingerprint Segmentation for Juveniles and Adults

    Full text link
    Many fingerprint recognition systems capture four fingerprints in one image. In such systems, the fingerprint processing pipeline must first segment each four-fingerprint slap into individual fingerprints. Note that most of the current fingerprint segmentation algorithms have been designed and evaluated using only adult fingerprint datasets. In this work, we have developed a human-annotated in-house dataset of 15790 slaps of which 9084 are adult samples and 6706 are samples drawn from children from ages 4 to 12. Subsequently, the dataset is used to evaluate the matching performance of the NFSEG, a slap fingerprint segmentation system developed by NIST, on slaps from adults and juvenile subjects. Our results reveal the lower performance of NFSEG on slaps from juvenile subjects. Finally, we utilized our novel dataset to develop the Mask-RCNN based Clarkson Fingerprint Segmentation (CFSEG). Our matching results using the Verifinger fingerprint matcher indicate that CFSEG outperforms NFSEG for both adults and juvenile slaps. The CFSEG model is publicly available at \url{https://github.com/keivanB/Clarkson_Finger_Segment

    UBSegNet: Unified Biometric Region of Interest Segmentation Network

    Full text link
    Digital human identity management, can now be seen as a social necessity, as it is essentially required in almost every public sector such as, financial inclusions, security, banking, social networking e.t.c. Hence, in today's rampantly emerging world with so many adversarial entities, relying on a single biometric trait is being too optimistic. In this paper, we have proposed a novel end-to-end, Unified Biometric ROI Segmentation Network (UBSegNet), for extracting region of interest from five different biometric traits viz. face, iris, palm, knuckle and 4-slap fingerprint. The architecture of the proposed UBSegNet consists of two stages: (i) Trait classification and (ii) Trait localization. For these stages, we have used a state of the art region based convolutional neural network (RCNN), comprising of three major parts namely convolutional layers, region proposal network (RPN) along with classification and regression heads. The model has been evaluated over various huge publicly available biometric databases. To the best of our knowledge this is the first unified architecture proposed, segmenting multiple biometric traits. It has been tested over around 5000 * 5 = 25,000 images (5000 images per trait) and produces very good results. Our work on unified biometric segmentation, opens up the vast opportunities in the field of multiple biometric traits based authentication systems.Comment: 4th Asian Conference on Pattern Recognition (ACPR 2017

    Segmentation of slap fingerprints

    Get PDF
    This thesis describes a novel algorithm that segments the individual fingerprints in a multi-print image. The algorithm identifies the distal phalanx portion of each finger that appears in the image and labels them as an index, middle, little or ring finger. The accuracy of this algorithm is compared with the publicly-available reference implementation, NFSEG, part of the NIST Biometric Image Software (NBIS) suite developed at National Institute of Standards and Technology (NIST). The comparison is performed over large set of fingerprint images captured from unique individuals

    Robust Minutiae Extractor: Integrating Deep Networks and Fingerprint Domain Knowledge

    Full text link
    We propose a fully automatic minutiae extractor, called MinutiaeNet, based on deep neural networks with compact feature representation for fast comparison of minutiae sets. Specifically, first a network, called CoarseNet, estimates the minutiae score map and minutiae orientation based on convolutional neural network and fingerprint domain knowledge (enhanced image, orientation field, and segmentation map). Subsequently, another network, called FineNet, refines the candidate minutiae locations based on score map. We demonstrate the effectiveness of using the fingerprint domain knowledge together with the deep networks. Experimental results on both latent (NIST SD27) and plain (FVC 2004) public domain fingerprint datasets provide comprehensive empirical support for the merits of our method. Further, our method finds minutiae sets that are better in terms of precision and recall in comparison with state-of-the-art on these two datasets. Given the lack of annotated fingerprint datasets with minutiae ground truth, the proposed approach to robust minutiae detection will be useful to train network-based fingerprint matching algorithms as well as for evaluating fingerprint individuality at scale. MinutiaeNet is implemented in Tensorflow: https://github.com/luannd/MinutiaeNetComment: Accepted to International Conference on Biometrics (ICB 2018

    A Study on Automatic Latent Fingerprint Identification System

    Get PDF
    Latent fingerprints are the unintentional impressions found at the crime scenes and are considered crucial evidence in criminal identification. Law enforcement and forensic agencies have been using latent fingerprints as testimony in courts. However, since the latent fingerprints are accidentally leftover on different surfaces, the lifted prints look inferior. Therefore, a tremendous amount of research is being carried out in automatic latent fingerprint identification to improve the overall fingerprint recognition performance. As a result, there is an ever-growing demand to develop reliable and robust systems. In this regard, we present a comprehensive literature review of the existing methods utilized in latent fingerprint acquisition, segmentation, quality assessment, enhancement, feature extraction, and matching steps. Later, we provide insight into different benchmark latent datasets available to perform research in this area. Our study highlights various research challenges and gaps by performing detailed analysis on the existing state-of-the-art segmentation, enhancement, extraction, and matching approaches to strengthen the research
    • …
    corecore