186,823 research outputs found
The behaviour of reinforced concrete slabs in fire
In this paper a robust model is presented based on the previous layer procedure developed by the author to also take into account the effects of concrete spalling on the behaviour of concrete slabs under fire conditions. In this study, a detailed analysis of a uniformly loaded reinforced concrete slab subject to different degrees of concrete spalling under a standard fire regime is first carried out. Further, a series of analysis of floor slabs with different degrees of concrete spalling is also performed on a generic reinforced concrete building. A total of 16 cases have been analysed using different degrees of spalling on the slabs, with different extents and positions of localised fire compartments. It is clear that adjacent cool structures provide considerable thermal restraint to the floor slabs within the fire compartment. And it is evident that the compressive membrane force within the slabs is a major player in reducing the impact of concrete spalling on the structural behaviour of floor slabs in fire. (C) 2010 Elsevier Ltd. All rights reserved
Screening of classical Casimir forces by electrolytes in semi-infinite geometries
We study the electrostatic Casimir effect and related phenomena in
equilibrium statistical mechanics of classical (non-quantum) charged fluids.
The prototype model consists of two identical dielectric slabs in empty space
(the pure Casimir effect) or in the presence of an electrolyte between the
slabs. In the latter case, it is generally believed that the long-ranged
Casimir force due to thermal fluctuations in the slabs is screened by the
electrolyte into some residual short-ranged force. The screening mechanism is
based on a "separation hypothesis": thermal fluctuations of the electrostatic
field in the slabs can be treated separately from the pure image effects of the
"inert" slabs on the electrolyte particles. In this paper, by using a
phenomenological approach under certain conditions, the separation hypothesis
is shown to be valid. The phenomenology is tested on a microscopic model in
which the conducting slabs and the electrolyte are modelled by the symmetric
Coulomb gases of point-like charges with different particle fugacities. The
model is solved in the high-temperature Debye-H\"uckel limit (in two and three
dimensions) and at the free fermion point of the Thirring representation of the
two-dimensional Coulomb gas. The Debye-H\"uckel theory of a Coulomb gas between
dielectric walls is also solved.Comment: 25 pages, 2 figure
Failure assessment of lightly reinforced floor slabs. I: Experimental investigation
This paper is concerned with the ultimate behavior of lightly reinforced concrete floor slabs under extreme loading conditions. Particular emphasis is given to examining the failure conditions of idealized composite slabs which become lightly reinforced in a fire situation as a result of the early loss of the steel deck. An experimental study is described which focuses on the response of two-way spanning floor slabs with various materials and geometric configurations. The tests enable direct assessment of the influence of a number of key parameters such as the reinforcement type, properties, and ratio on the ultimate response. The results also permit the development of simplified expressions that capture the influence of salient factors such as bond characteristics and reinforcement properties for predicting the ductility of lightly reinforced floor slabs. The companion paper complements the experimental observations with detailed numerical assessments of the ultimate response and proposes analytical models that predict failure of slab members by either reinforcement fracture or compressive crushing of concrete. © 2011 American Society of Civil Engineers
Band structure of honeycomb photonic crystal slabs
Two-dimensional (2D) honeycomb photonic crystals with cylinders and
connecting walls have the potential to have a large full band gap. In
experiments, 2D photonic crystals do not have an infinite height, and
therefore, we investigate the effects of the thickness of the walls, the height
of the slabs and the type of the substrates on the photonic bands and gap maps
of 2D honeycomb photonic crystal slabs. The band structures are calculated by
the plane wave expansion method and the supercell approach. We find that the
slab thickness is a key parameter affecting the band gap size while on the
other hand the wall thickness hardly affact the gap size. For symmetric
photonic crystal slabs with lower dielectric claddings, the height of the slabs
needs to be sufficiently large to maintain a band gap. For asymmetric
claddings, the projected band diagrams are similar to that of symmetric slabs
as long as the dielectric constants of the claddings do not differ greatly.Comment: Accepted for publication in Journal of Applied Physic
Siberian flood basalt magmatism and Mongolia-Okhotsk slab dehydration
Experimental data combined with numerical calculations suggest that fast subducting slabs are cold enough to carry into the deep mantle a significant portion of the water in antigorite, which transforms with increasing depth to phase A and then to phase E and/or wadsleyite by solid-solid phase transition. Clathrate hydrates and ice VII are also stable at PT conditions of cold slabs and represent other potential phases for water transport into the deep mantle. Some cold slabs are expected to deflect while crossing the 410 km and stagnate in transition zone being unable to penetrate through 660 km discontinuity. In this way slabs can move a long way beneath continents after long-lived subduction. With time, the stagnant slabs are heated to the temperature of the ambient transition zone and release free H~2~O-bearing fluid. Combining with transition zone water filter model this may cause voluminous melting of overlying upper mantle rocks. If such process operates in nature, magmas geochemically similar to island-arc magmas are expected to appear in places relatively remote from active arcs at the time of their emplacement. Dolerites of the south-eastern margin of the Siberian flood basalt province, located about 700 km from suggested trench, were probably associated with fast subduction of the Mongolia-Okhotsk slab and originated by dehydration of the stagnant slab in the transition zone. We show that influence of the subduction-related deep water cycle on Siberian flood basalt magmatism gradually reduced with increasing distance from the subduction zone
Casimir energy and entropy between dissipative mirrors
We discuss the Casimir effect between two identical, parallel slabs,
emphasizing the role of dissipation and temperature. Starting from quite
general assumptions, we analyze the behavior of the Casimir entropy in the
limit T->0 and link it to the behavior of the slab's reflection coefficients at
low frequencies. We also derive a formula in terms of a sum over modes, valid
for dissipative slabs that can be interpreted in terms of a damped quantum
oscillator.Comment: 8 pages, 1 figur
- …
