3 research outputs found

    Skin perfusion photography

    Get PDF
    The separation of global and direct light components of a scene is highly useful for scene analysis, as each component offers different information about illumination-scene-detector interactions. Relying on ray optics, the technique is important in computational photography, but it is often under appreciated in the biomedical imaging community, where wave interference effects are utilized. Nevertheless, such coherent optical systems lend themselves naturally to global-direct separation methods because of the high spatial frequency nature of speckle interference patterns. Here, we extend global-direct separation to laser speckle contrast imaging (LSCI) system to reconstruct speed maps of blood flow in skin. We compare experimental results with a speckle formation model of moving objects and show that the reconstructed map of skin perfusion is improved over the conventional case

    Advances in ultrafast optics and imaging applications

    Get PDF
    Ultrafast imaging has been a key enabler to many novel imaging modalities, including looking behind corners and imaging behind scattering layers. With picosecond time resolution and unconventional sensing geometries, ultrafast imaging can fundamentally impact sensing capabilities in industrial and biomedical applications. This paper reviews the fundamentals, recent advances, and the future prospects of ultrafast imaging-based modalities

    Handheld laser speckle contrast perfusion imaging

    Get PDF
    corecore