1,673 research outputs found

    Optical Methods in Sensing and Imaging for Medical and Biological Applications

    Get PDF
    The recent advances in optical sources and detectors have opened up new opportunities for sensing and imaging techniques which can be successfully used in biomedical and healthcare applications. This book, entitled ‘Optical Methods in Sensing and Imaging for Medical and Biological Applications’, focuses on various aspects of the research and development related to these areas. The book will be a valuable source of information presenting the recent advances in optical methods and novel techniques, as well as their applications in the fields of biomedicine and healthcare, to anyone interested in this subject

    Gas Discharge Visualization: An Imaging and Modeling Tool for Medical Biometrics

    Get PDF
    The need for automated identification of a disease makes the issue of medical biometrics very current in our society. Not all biometric tools available provide real-time feedback. We introduce gas discharge visualization (GDV) technique as one of the biometric tools that have the potential to identify deviations from the normal functional state at early stages and in real time. GDV is a nonintrusive technique to capture the physiological and psychoemotional status of a person and the functional status of different organs and organ systems through the electrophotonic emissions of fingertips placed on the surface of an impulse analyzer. This paper first introduces biometrics and its different types and then specifically focuses on medical biometrics and the potential applications of GDV in medical biometrics. We also present our previous experience with GDV in the research regarding autism and the potential use of GDV in combination with computer science for the potential development of biological pattern/biomarker for different kinds of health abnormalities including cancer and mental diseases

    Skin Hydration and Solvent Penetration Measurements by Opto-thermal Radiometry, AquaFlux and Fingerprint Sensor

    Get PDF
    The aim of this study is to develop new data analysis techniques and new measurement methodologies for skin hydration and solvent penetration measurements by using Opto-Thermal Transient Emission Radiometry (OTTER), AquaFlux and capacitive contact imaging based on Fingerprint sensor, three novel technologies developed by our research group. This research work is divided into three aspects: the theoretical work, the experimental work and the portable opto-thermal radiometry hardware design work. In the theoretical work, a) an effective image retrieval method based on Gabor wavelet transform has been developed, the results show that it is particularly useful for retrieving the grayscale capacitive skin images; b) an algorithm based on Grey Level Co-occurrence Matrix (GLCM) has been developed to analyze the grayscale capacitive skin images; c) a comparison study of Gabor wavelet transform, Grey level co-occurrence matrix (GLCM) and Principal Component Analysis (PCA) has been conducted in order to understand the performance of each algorithm, and to find out which algorithm is suitable for what type of images. In the opto-thermal radiometry hardware design work, a new, low cost, portable opto-thermal radiometry instrument, based on a broadband Infrared emitter and a room temperature PbS detector, has been designed and developed. The results show that it can work on any unprepared sample surfaces. In the experimental work, various in-vivo and in-vitro measurements were performed in order to study skin hydration and solvent penetration through skin and membranes. The results show that, combined with tape stripping, capacitive skin imaging can be a powerful tool for skin hydration, skin texture and solvent penetration measurements. The effect of three different parameters of Fingerprint sensor and its detection depth are also studied. The outcomes of this work have provided a better understanding for skin hydration and solvent penetration measurements and have generated several publications

    Internal fingerprint extraction

    Get PDF
    Fingerprints are a non-invasive biometric that possess significant advantages. However, they are subject to surface erosion and damage; distortion upon scanning; and are vulnerable to fingerprint spoofing. The internal fingerprint exists as the undulations of the papillary junction - an intermediary layer of skin - and provides a solution to these disadvantages. Optical coherence tomography is used to capture the internal fingerprint. A depth profile of the papillary junction throughout the OCT scans is first constructed using fuzzy c-means clustering and a fine-tuning procedure. This information is then used to define localised regions over which to average pixels for the resultant internal fingerprint. When compared to a ground-truth internal fingerprint zone, the internal fingerprint zone detected automatically is within the measured bounds of human error. With a mean- squared-error of 21.3 and structural similarity of 96.4%, the internal fingerprint zone was successfully found and described. The extracted fingerprints exceed their surface counterparts with respect to orientation certainty and NFIQ scores (both of which are respected fingerprint quality assessment criteria). Internal to surface fingerprint correspondence and internal fingerprint cross correspondence were also measured. A larger scanned region is shown to be advantageous as internal fingerprints extracted from these scans have good surface correspondence (75% had at least one true match with a surface counterpart). It is also evidenced that internal fingerprints can constitute a fingerprint database. 96% of the internal fingerprints extracted had at least one corresponding match with another internal fingerprint. When compared to surface fingerprints cropped to match the internal fingerprints’ representative area and locality, the internal fingerprints outperformed these cropped surface counterparts. The internal fingerprint is an attractive biometric solution. This research develops a novel approach to extracting the internal fingerprint and is an asset to the further development of technologies surrounding fingerprint extraction from OCT scans. No earlier work has extracted or tested the internal fingerprint to the degree that this research has

    Recent Application in Biometrics

    Get PDF
    In the recent years, a number of recognition and authentication systems based on biometric measurements have been proposed. Algorithms and sensors have been developed to acquire and process many different biometric traits. Moreover, the biometric technology is being used in novel ways, with potential commercial and practical implications to our daily activities. The key objective of the book is to provide a collection of comprehensive references on some recent theoretical development as well as novel applications in biometrics. The topics covered in this book reflect well both aspects of development. They include biometric sample quality, privacy preserving and cancellable biometrics, contactless biometrics, novel and unconventional biometrics, and the technical challenges in implementing the technology in portable devices. The book consists of 15 chapters. It is divided into four sections, namely, biometric applications on mobile platforms, cancelable biometrics, biometric encryption, and other applications. The book was reviewed by editors Dr. Jucheng Yang and Dr. Norman Poh. We deeply appreciate the efforts of our guest editors: Dr. Girija Chetty, Dr. Loris Nanni, Dr. Jianjiang Feng, Dr. Dongsun Park and Dr. Sook Yoon, as well as a number of anonymous reviewers
    • …
    corecore