3,552 research outputs found

    Vision-Based Three Dimensional Hand Interaction In Markerless Augmented Reality Environment

    Get PDF
    Kemunculan realiti tambahan membolehkan objek maya untuk wujud bersama dengan dunia sebenar dan ini memberi kaedah baru untuk berinteraksi dengan objek maya. Sistem realiti tambahan memerlukan penunjuk tertentu, seperti penanda untuk menentukan bagaimana objek maya wujud dalam dunia sebenar. Penunjuk tertentu mesti diperolehi untuk menggunakan sistem realiti tambahan, tetapi susah untuk seseorang mempunyai penunjuk tersebut pada bila-bila masa. Tangan manusia, yang merupakan sebahagian dari badan manusia dapat menyelesaikan masalah ini. Selain itu, tangan boleh digunakan untuk berinteraksi dengan objek maya dalam dunia realiti tambahan. Tesis ini membentangkan sebuah sistem realiti tambahan yang menggunakan tangan terbuka untuk pendaftaran objek maya dalam persekitaran sebenar dan membolehkan pengguna untuk menggunakan tangan yang satu lagi untuk berinteraksi dengan objek maya yang ditambahkan dalam tiga-matra. Untuk menggunakan tangan untuk pendaftaran dan interaksi dalam realiti tambahan, postur dan isyarat tangan pengguna perlu dikesan. The advent of augmented reality (AR) enables virtual objects to be superimposed on the real world and provides a new way to interact with the virtual objects. AR system requires an indicator to determine for how the virtual objects aligned in the real world. The indicator must first be obtained to access to a particular AR system. It may be inconvenient to have the indicator in reach at all time. Human hand, which is part of the human body may be a solution for this. Besides, hand is also a promising tool for interaction with virtual objects in AR environment. This thesis presents a markerless Augmented Reality system which utilizes outstretched hand for registration of virtual objects in the real environment and enables the users to have three dimensional (3D) interaction with the augmented virtual objects. To employ the hand for registration and interaction in AR, hand postures and gestures that the user perform has to be recognized

    Non-intrusive Head Movement Analysis of Videotaped Seizures of Epileptic Origin

    Get PDF
    Abstract — In this work we propose a non-intrusive video analytic system for patient’s body parts movement analysis in Epilepsy Monitoring Unit. The system utilizes skin color modeling, head/face pose template matching and face detection to analyze and quantify the head movements. Epileptic patients’ heads are analyzed holistically to infer seizure and normal random movements. The patient does not require to wear any special clothing, markers or sensors, hence it is totally nonintrusive. The user initializes the person-specific skin color and selects few face/head poses in the initial few frames. The system then tracks the head/face and extracts spatio-temporal features. Support vector machines are then used on these features to classify seizure-like movements from normal random movements. Experiments are performed on numerous long hour video sequences captured in an Epilepsy Monitoring Unit at a local hospital. The results demonstrate the feasibility of the proposed system in pediatric epilepsy monitoring and seizure detection. I

    Human robot interaction in a crowded environment

    No full text
    Human Robot Interaction (HRI) is the primary means of establishing natural and affective communication between humans and robots. HRI enables robots to act in a way similar to humans in order to assist in activities that are considered to be laborious, unsafe, or repetitive. Vision based human robot interaction is a major component of HRI, with which visual information is used to interpret how human interaction takes place. Common tasks of HRI include finding pre-trained static or dynamic gestures in an image, which involves localising different key parts of the human body such as the face and hands. This information is subsequently used to extract different gestures. After the initial detection process, the robot is required to comprehend the underlying meaning of these gestures [3]. Thus far, most gesture recognition systems can only detect gestures and identify a person in relatively static environments. This is not realistic for practical applications as difficulties may arise from people‟s movements and changing illumination conditions. Another issue to consider is that of identifying the commanding person in a crowded scene, which is important for interpreting the navigation commands. To this end, it is necessary to associate the gesture to the correct person and automatic reasoning is required to extract the most probable location of the person who has initiated the gesture. In this thesis, we have proposed a practical framework for addressing the above issues. It attempts to achieve a coarse level understanding about a given environment before engaging in active communication. This includes recognizing human robot interaction, where a person has the intention to communicate with the robot. In this regard, it is necessary to differentiate if people present are engaged with each other or their surrounding environment. The basic task is to detect and reason about the environmental context and different interactions so as to respond accordingly. For example, if individuals are engaged in conversation, the robot should realize it is best not to disturb or, if an individual is receptive to the robot‟s interaction, it may approach the person. Finally, if the user is moving in the environment, it can analyse further to understand if any help can be offered in assisting this user. The method proposed in this thesis combines multiple visual cues in a Bayesian framework to identify people in a scene and determine potential intentions. For improving system performance, contextual feedback is used, which allows the Bayesian network to evolve and adjust itself according to the surrounding environment. The results achieved demonstrate the effectiveness of the technique in dealing with human-robot interaction in a relatively crowded environment [7]

    March 25, 1952

    Get PDF
    The Breeze is the student newspaper of James Madison University in Harrisonburg, Virginia

    SPA: Sparse Photorealistic Animation using a single RGB-D camera

    Get PDF
    Photorealistic animation is a desirable technique for computer games and movie production. We propose a new method to synthesize plausible videos of human actors with new motions using a single cheap RGB-D camera. A small database is captured in a usual office environment, which happens only once for synthesizing different motions. We propose a markerless performance capture method using sparse deformation to obtain the geometry and pose of the actor for each time instance in the database. Then, we synthesize an animation video of the actor performing the new motion that is defined by the user. An adaptive model-guided texture synthesis method based on weighted low-rank matrix completion is proposed to be less sensitive to noise and outliers, which enables us to easily create photorealistic animation videos with new motions that are different from the motions in the database. Experimental results on the public dataset and our captured dataset have verified the effectiveness of the proposed method

    Analysis of the hands in egocentric vision: A survey

    Full text link
    Egocentric vision (a.k.a. first-person vision - FPV) applications have thrived over the past few years, thanks to the availability of affordable wearable cameras and large annotated datasets. The position of the wearable camera (usually mounted on the head) allows recording exactly what the camera wearers have in front of them, in particular hands and manipulated objects. This intrinsic advantage enables the study of the hands from multiple perspectives: localizing hands and their parts within the images; understanding what actions and activities the hands are involved in; and developing human-computer interfaces that rely on hand gestures. In this survey, we review the literature that focuses on the hands using egocentric vision, categorizing the existing approaches into: localization (where are the hands or parts of them?); interpretation (what are the hands doing?); and application (e.g., systems that used egocentric hand cues for solving a specific problem). Moreover, a list of the most prominent datasets with hand-based annotations is provided
    corecore