58,458 research outputs found

    Data-Free Sketch-Based Image Retrieval

    Full text link
    Rising concerns about privacy and anonymity preservation of deep learning models have facilitated research in data-free learning (DFL). For the first time, we identify that for data-scarce tasks like Sketch-Based Image Retrieval (SBIR), where the difficulty in acquiring paired photos and hand-drawn sketches limits data-dependent cross-modal learning algorithms, DFL can prove to be a much more practical paradigm. We thus propose Data-Free (DF)-SBIR, where, unlike existing DFL problems, pre-trained, single-modality classification models have to be leveraged to learn a cross-modal metric-space for retrieval without access to any training data. The widespread availability of pre-trained classification models, along with the difficulty in acquiring paired photo-sketch datasets for SBIR justify the practicality of this setting. We present a methodology for DF-SBIR, which can leverage knowledge from models independently trained to perform classification on photos and sketches. We evaluate our model on the Sketchy, TU-Berlin, and QuickDraw benchmarks, designing a variety of baselines based on state-of-the-art DFL literature, and observe that our method surpasses all of them by significant margins. Our method also achieves mAPs competitive with data-dependent approaches, all the while requiring no training data. Implementation is available at \url{https://github.com/abhrac/data-free-sbir}.Comment: Computer Vision and Pattern Recognition (CVPR) 202

    An Empirical Comparison of Different Machine

    Get PDF
    Sketching has been used by humans to visualize and narrate the aesthetics of the world for a long time. With the onset of touch devices and augmented technologies, it has attracted more and more attention in recent years. Recognition of free-hand sketches is an extremely cumbersome and challenging task due to its abstract qualities and lack of visual cues. Most of the previous work has been done to identify objects in real pictorial images using neural networks instead of a more abstract depiction of the same objects in sketch. This research aims at comparing the performance of different machine learning algorithms and their learned inner representations. This research studies some of the famous machine learning models in classifying sketch images. It also does a study of legacy and the new datasets to classify a new sketch through various classifiers like support vector machines and the use of deep neural networks. It achieved remarkable results but still lacking behind the accuracy in the classification of the sketch images

    Deep Embeddings for Robust User-Based Amateur Vocal Percussion Classification

    Get PDF
    Vocal Percussion Transcription (VPT) is concerned with the automatic detection and classification of vocal percussion sound events, allowing music creators and producers to sketch drum lines on the fly. Classifier algorithms in VPT systems learn best from small user-specific datasets, which usually restrict modelling to small input feature sets to avoid data overfitting. This study explores several deep supervised learning strategies to obtain informative feature sets for amateur vocal percussion classification. We evaluated the performance of these sets on regular vocal percussion classification tasks and compared them with several baseline approaches including feature selection methods and a speech recognition engine. These proposed learning models were supervised with several label sets containing information from four different levels of abstraction: instrument-level, syllable-level, phoneme-level, and boxeme-level. Results suggest that convolutional neural networks supervised with syllable-level annotations produced the most informative embeddings for classification, which can be used as input representations to fit classifiers with. Finally, we used back-propagation-based saliency maps to investigate the importance of different spectrogram regions for feature learning

    Deep Shape Matching

    Full text link
    We cast shape matching as metric learning with convolutional networks. We break the end-to-end process of image representation into two parts. Firstly, well established efficient methods are chosen to turn the images into edge maps. Secondly, the network is trained with edge maps of landmark images, which are automatically obtained by a structure-from-motion pipeline. The learned representation is evaluated on a range of different tasks, providing improvements on challenging cases of domain generalization, generic sketch-based image retrieval or its fine-grained counterpart. In contrast to other methods that learn a different model per task, object category, or domain, we use the same network throughout all our experiments, achieving state-of-the-art results in multiple benchmarks.Comment: ECCV 201

    Multi-view Convolutional Neural Networks for 3D Shape Recognition

    Full text link
    A longstanding question in computer vision concerns the representation of 3D shapes for recognition: should 3D shapes be represented with descriptors operating on their native 3D formats, such as voxel grid or polygon mesh, or can they be effectively represented with view-based descriptors? We address this question in the context of learning to recognize 3D shapes from a collection of their rendered views on 2D images. We first present a standard CNN architecture trained to recognize the shapes' rendered views independently of each other, and show that a 3D shape can be recognized even from a single view at an accuracy far higher than using state-of-the-art 3D shape descriptors. Recognition rates further increase when multiple views of the shapes are provided. In addition, we present a novel CNN architecture that combines information from multiple views of a 3D shape into a single and compact shape descriptor offering even better recognition performance. The same architecture can be applied to accurately recognize human hand-drawn sketches of shapes. We conclude that a collection of 2D views can be highly informative for 3D shape recognition and is amenable to emerging CNN architectures and their derivatives.Comment: v1: Initial version. v2: An updated ModelNet40 training/test split is used; results with low-rank Mahalanobis metric learning are added. v3 (ICCV 2015): A second camera setup without the upright orientation assumption is added; some accuracy and mAP numbers are changed slightly because a small issue in mesh rendering related to specularities is fixe
    corecore