9,129 research outputs found

    Hierarchical interpolative factorization for elliptic operators: integral equations

    Full text link
    This paper introduces the hierarchical interpolative factorization for integral equations (HIF-IE) associated with elliptic problems in two and three dimensions. This factorization takes the form of an approximate generalized LU decomposition that permits the efficient application of the discretized operator and its inverse. HIF-IE is based on the recursive skeletonization algorithm but incorporates a novel combination of two key features: (1) a matrix factorization framework for sparsifying structured dense matrices and (2) a recursive dimensional reduction strategy to decrease the cost. Thus, higher-dimensional problems are effectively mapped to one dimension, and we conjecture that constructing, applying, and inverting the factorization all have linear or quasilinear complexity. Numerical experiments support this claim and further demonstrate the performance of our algorithm as a generalized fast multipole method, direct solver, and preconditioner. HIF-IE is compatible with geometric adaptivity and can handle both boundary and volume problems. MATLAB codes are freely available.Comment: 39 pages, 14 figures, 13 tables; to appear, Comm. Pure Appl. Mat

    Hierarchical interpolative factorization for elliptic operators: differential equations

    Full text link
    This paper introduces the hierarchical interpolative factorization for elliptic partial differential equations (HIF-DE) in two (2D) and three dimensions (3D). This factorization takes the form of an approximate generalized LU/LDL decomposition that facilitates the efficient inversion of the discretized operator. HIF-DE is based on the multifrontal method but uses skeletonization on the separator fronts to sparsify the dense frontal matrices and thus reduce the cost. We conjecture that this strategy yields linear complexity in 2D and quasilinear complexity in 3D. Estimated linear complexity in 3D can be achieved by skeletonizing the compressed fronts themselves, which amounts geometrically to a recursive dimensional reduction scheme. Numerical experiments support our claims and further demonstrate the performance of our algorithm as a fast direct solver and preconditioner. MATLAB codes are freely available.Comment: 37 pages, 13 figures, 12 tables; to appear, Comm. Pure Appl. Math. arXiv admin note: substantial text overlap with arXiv:1307.266

    Distributed-memory Hierarchical Interpolative Factorization

    Full text link
    The hierarchical interpolative factorization (HIF) offers an efficient way for solving or preconditioning elliptic partial differential equations. By exploiting locality and low-rank properties of the operators, the HIF achieves quasi-linear complexity for factorizing the discrete positive definite elliptic operator and linear complexity for solving the associated linear system. In this paper, the distributed-memory HIF (DHIF) is introduced as a parallel and distributed-memory implementation of the HIF. The DHIF organizes the processes in a hierarchical structure and keep the communication as local as possible. The computation complexity is O(NlogNP)O\left(\frac{N\log N}{P}\right) and O(NP)O\left(\frac{N}{P}\right) for constructing and applying the DHIF, respectively, where NN is the size of the problem and PP is the number of processes. The communication complexity is O(Plog3P)α+O(N2/3P)βO\left(\sqrt{P}\log^3 P\right)\alpha + O\left(\frac{N^{2/3}}{\sqrt{P}}\right)\beta where α\alpha is the latency and β\beta is the inverse bandwidth. Extensive numerical examples are performed on the NERSC Edison system with up to 8192 processes. The numerical results agree with the complexity analysis and demonstrate the efficiency and scalability of the DHIF

    An improved rotation-invariant thinning algorithm

    Get PDF
    Ahmed & Ward have recently presented an elegant, rule-based rotation-invariant thinning algorithm to produce a single-pixel wide skeleton from a binary image. We show examples where this algorithm fails on two-pixel wide lines and propose a modified method which corrects this shortcoming based on graph connectivity
    corecore