22,122 research outputs found

    A decision forest based feature selection framework for action recognition from RGB-Depth cameras

    Get PDF
    In this paper, we present an action recognition framework leveraging data mining capabilities of random decision forests trained on kinematic features. We describe human motion via a rich collection of kinematic feature time-series computed from the skeletal representation of the body in motion. We discriminatively optimize a random decision forest model over this collection to identify the most effective subset of features, localized both in time and space. Later, we train a support vector machine classifier on the selected features. This approach improves upon the baseline performance obtained using the whole feature set with a significantly less number of features (one tenth of the original). On MSRC-12 dataset (12 classes), our method achieves 94% accuracy. On the WorkoutSU-10 dataset, collected by our group (10 physical exercise classes), the accuracy is 98%. The approach can also be used to provide insights on the spatiotemporal dynamics of human actions

    Computerized Analysis of Magnetic Resonance Images to Study Cerebral Anatomy in Developing Neonates

    Get PDF
    The study of cerebral anatomy in developing neonates is of great importance for the understanding of brain development during the early period of life. This dissertation therefore focuses on three challenges in the modelling of cerebral anatomy in neonates during brain development. The methods that have been developed all use Magnetic Resonance Images (MRI) as source data. To facilitate study of vascular development in the neonatal period, a set of image analysis algorithms are developed to automatically extract and model cerebral vessel trees. The whole process consists of cerebral vessel tracking from automatically placed seed points, vessel tree generation, and vasculature registration and matching. These algorithms have been tested on clinical Time-of- Flight (TOF) MR angiographic datasets. To facilitate study of the neonatal cortex a complete cerebral cortex segmentation and reconstruction pipeline has been developed. Segmentation of the neonatal cortex is not effectively done by existing algorithms designed for the adult brain because the contrast between grey and white matter is reversed. This causes pixels containing tissue mixtures to be incorrectly labelled by conventional methods. The neonatal cortical segmentation method that has been developed is based on a novel expectation-maximization (EM) method with explicit correction for mislabelled partial volume voxels. Based on the resulting cortical segmentation, an implicit surface evolution technique is adopted for the reconstruction of the cortex in neonates. The performance of the method is investigated by performing a detailed landmark study. To facilitate study of cortical development, a cortical surface registration algorithm for aligning the cortical surface is developed. The method first inflates extracted cortical surfaces and then performs a non-rigid surface registration using free-form deformations (FFDs) to remove residual alignment. Validation experiments using data labelled by an expert observer demonstrate that the method can capture local changes and follow the growth of specific sulcus
    corecore