257 research outputs found

    A new nonlinear time-domain op-amp macromodel using threshold functions and digitally controlled network elements

    Get PDF
    A general-purpose nonlinear macromodel for the time-domain simulation of integrated circuit operational amplifiers (op amps), either bipolar or MOS, is presented. Three main differences exist between the macromodel and those previously reported in the literature for the time domain. First, all the op-amp nonlinearities are simulated using threshold elements and digital components, thus making them well suited for a mixed electrical/logical simulator. Secondly, the macromodel exhibits a superior performance in those cases where the op amp is driven by a large signal. Finally, the macromodel is advantageous in terms of CPU time. Several examples are included illustrating all of these advantages. The main application of this macromodel is for the accurate simulation of the analog part of a combined analog/digital integrated circui

    Study of voltage controlled oscillator based analog-to-digital converter

    Get PDF
    A voltage controlled oscillator (VCO) based analog-to-digital converter (ADC) is a time based architecture with a first-order noise-shaping property, which can be implemented using a VCO and digital circuits. This thesis analyzes the performance of VCO-based ADCs in the presence of non idealities such as jitter, nonlinearity, mismatch, and the metastability of D flip-flops. Based on this analysis, design criteria for determining parameters for VCO-based ADCs are described. Further, the study involves the use of VCO based Dual-slope A/D converter and its behaviour under different input voltage level. Graph is plotted between output voltages of the integrator vs. time. Digital circuits like a bit-counter and logic circuits are used for operation mode. A normal VCO model is also done in MATLAB-simulink environment and studied under variable input frequency and corresponding output plots are view

    Multi-Loop-Ring-Oscillator Design and Analysis for Sub-Micron CMOS

    Get PDF
    Ring oscillators provide a central role in timing circuits for today?s mobile devices and desktop computers. Increased integration in these devices exacerbates switching noise on the supply, necessitating improved supply resilience. Furthermore, reduced voltage headroom in submicron technologies limits the number of stacked transistors available in a delay cell. Hence, conventional single-loop oscillators offer relatively few design options to achieve desired specifications, such as supply rejection. Existing state-of-the-art supply-rejection- enhancement methods include actively regulating the supply with an LDO, employing a fully differential or current-starved delay cell, using a hi-Z voltage-to-current converter, or compensating/calibrating the delay cell. Multiloop ring oscillators (MROs) offer an additional solution because by employing a more complex ring-connection structure and associated delay cell, the designer obtains an additional degree of freedom to meet the desired specifications. Designing these more complex multiloop structures to start reliably and achieve the desired performance requires a systematic analysis procedure, which we attack on two fronts: (1) a generalized delay-cell viewpoint of the MRO structure to assist in both analysis and circuit layout, and (2) a survey of phase-noise analysis to provide a bank of methods to analyze MRO phase noise. We distill the salient phase-noise-analysis concepts/key equations previously developed to facilitate MRO and other non-conventional oscillator analysis. Furthermore, our proposed analysis framework demonstrates that all these methods boil down to obtaining three things: (1) noise modulation function (NMF), (2) noise transfer function (NTF), and (3) current-controlled-oscillator gain (KICO). As a case study, we detail the design, analysis, and measurement of a proposed multiloop ring oscillator structure that provides improved power-supply isolation (more than 20dB increase in supply rejection over a conventional-oscillator control case fabricated on the same test chip). Applying our general multi-loop-oscillator framework to this proposed MRO circuit leads both to design-oriented expressions for the oscillation frequency and supply rejection as well as to an efficient layout technique facilitating cross-coupling for improved quadrature accuracy and systematic, substantially simplified layout effort

    Theoretical Study of the Circuit Architecture of the Basic CFOA and Testing Techniques

    Get PDF
    This paper examines the closed-loop characteristics of the basic CFOA, and in particular, the dynamic response. Additionally, it also examines the design and advantages of the CFOA regarding its ability to provide a significantly constant closed-loop bandwidth for closed-loop voltage gain. Secondly, the almost limitless slew–rate provided by the class AB input stage that makes it superior to the VOA counterpart. Additionally; this paper also concerns the definitions and measurements of the terminal parameters of the CFOA, regarded as a ‘black box’. It does not deal with the way that these parameters are related to the properties of the active passive and active components of a particular circuit configuration. Simulation is used in terminal parameter determination: this brings with it the facility of using test conditions that would not normally prevail in a laboratory test on silicon implementations of the CFOAs. Thus, we can apply 1mA and 1mV test signals from, respectively, infinite and zero source impedances that range in frequency from d.c to some tens of GHz. Also, we assume the existence of resistors with identical Ohmic value and very high value ideal capacitors. Where appropriate, practical test methods are referred to physical laboratory prototypes
    corecore