10 research outputs found

    Singularly Perturbed Monotone Systems and an Application to Double Phosphorylation Cycles

    Full text link
    The theory of monotone dynamical systems has been found very useful in the modeling of some gene, protein, and signaling networks. In monotone systems, every net feedback loop is positive. On the other hand, negative feedback loops are important features of many systems, since they are required for adaptation and precision. This paper shows that, provided that these negative loops act at a comparatively fast time scale, the main dynamical property of (strongly) monotone systems, convergence to steady states, is still valid. An application is worked out to a double-phosphorylation ``futile cycle'' motif which plays a central role in eukaryotic cell signaling.Comment: 21 pages, 3 figures, corrected typos, references remove

    Operator-Theoretic Characterization of Eventually Monotone Systems

    Full text link
    Monotone systems are dynamical systems whose solutions preserve a partial order in the initial condition for all positive times. It stands to reason that some systems may preserve a partial order only after some initial transient. These systems are usually called eventually monotone. While monotone systems have a characterization in terms of their vector fields (i.e. Kamke-Muller condition), eventually monotone systems have not been characterized in such an explicit manner. In order to provide a characterization, we drew inspiration from the results for linear systems, where eventually monotone (positive) systems are studied using the spectral properties of the system (i.e. Perron-Frobenius property). In the case of nonlinear systems, this spectral characterization is not straightforward, a fact that explains why the class of eventually monotone systems has received little attention to date. In this paper, we show that a spectral characterization of nonlinear eventually monotone systems can be obtained through the Koopman operator framework. We consider a number of biologically inspired examples to illustrate the potential applicability of eventual monotonicity.Comment: 13 page

    Robustness of networked systems to unintended interactions with application to engineered genetic circuits

    Full text link
    A networked dynamical system is composed of subsystems interconnected through prescribed interactions. In many engineering applications, however, one subsystem can also affect others through "unintended" interactions that can significantly hamper the intended network's behavior. Although unintended interactions can be modeled as disturbance inputs to the subsystems, these disturbances depend on the network's states. As a consequence, a disturbance attenuation property of each isolated subsystem is, alone, insufficient to ensure that the network behavior is robust to unintended interactions. In this paper, we provide sufficient conditions on subsystem dynamics and interaction maps, such that the network's behavior is robust to unintended interactions. These conditions require that each subsystem attenuates constant external disturbances, is monotone or "near-monotone", the unintended interaction map is monotone, and the prescribed interaction map does not contain feedback loops. We employ this result to guide the design of resource-limited genetic circuits. More generally, our result provide conditions under which robustness of constituent subsystems is sufficient to guarantee robustness of the network to unintended interactions
    corecore