13 research outputs found

    Asymptotic law of likelihood ratio for multilayer perceptron models

    Full text link
    We consider regression models involving multilayer perceptrons (MLP) with one hidden layer and a Gaussian noise. The data are assumed to be generated by a true MLP model and the estimation of the parameters of the MLP is done by maximizing the likelihood of the model. When the number of hidden units of the true model is known, the asymptotic distribution of the maximum likelihood estimator (MLE) and the likelihood ratio (LR) statistic is easy to compute and converge to a χ2\chi^2 law. However, if the number of hidden unit is over-estimated the Fischer information matrix of the model is singular and the asymptotic behavior of the MLE is unknown. This paper deals with this case, and gives the exact asymptotic law of the LR statistics. Namely, if the parameters of the MLP lie in a suitable compact set, we show that the LR statistics is the supremum of the square of a Gaussian process indexed by a class of limit score functions.Comment: 19 page

    Equations of States in Statistical Learning for a Nonparametrizable and Regular Case

    Full text link
    Many learning machines that have hierarchical structure or hidden variables are now being used in information science, artificial intelligence, and bioinformatics. However, several learning machines used in such fields are not regular but singular statistical models, hence their generalization performance is still left unknown. To overcome these problems, in the previous papers, we proved new equations in statistical learning, by which we can estimate the Bayes generalization loss from the Bayes training loss and the functional variance, on the condition that the true distribution is a singularity contained in a learning machine. In this paper, we prove that the same equations hold even if a true distribution is not contained in a parametric model. Also we prove that, the proposed equations in a regular case are asymptotically equivalent to the Takeuchi information criterion. Therefore, the proposed equations are always applicable without any condition on the unknown true distribution

    On the Principle of Least Symmetry Breaking in Shallow ReLU Models

    Full text link
    We consider the optimization problem associated with fitting two-layer ReLU networks with respect to the squared loss, where labels are assumed to be generated by a target network. Focusing first on standard Gaussian inputs, we show that the structure of spurious local minima detected by stochastic gradient descent (SGD) is, in a well-defined sense, the \emph{least loss of symmetry} with respect to the target weights. A closer look at the analysis indicates that this principle of least symmetry breaking may apply to a broader range of settings. Motivated by this, we conduct a series of experiments which corroborate this hypothesis for different classes of non-isotropic non-product distributions, smooth activation functions and networks with a few layers

    階層型神経回路モデルにおける学習力学の幾何学的理論

    Get PDF
    学位の種別: 課程博士審査委員会委員 : (主査)東京大学教授 岡田 真人, 東京大学教授 津田 宏治, 東京大学教授 能瀬 聡直, 東京大学准教授 國廣 昇, 東京大学講師 佐藤 一誠University of Tokyo(東京大学

    Echo state model of non-Markovian reinforcement learning, An

    Get PDF
    Department Head: Dale H. Grit.2008 Spring.Includes bibliographical references (pages 137-142).There exists a growing need for intelligent, autonomous control strategies that operate in real-world domains. Theoretically the state-action space must exhibit the Markov property in order for reinforcement learning to be applicable. Empirical evidence, however, suggests that reinforcement learning also applies to domains where the state-action space is approximately Markovian, a requirement for the overwhelming majority of real-world domains. These domains, termed non-Markovian reinforcement learning domains, raise a unique set of practical challenges. The reconstruction dimension required to approximate a Markovian state-space is unknown a priori and can potentially be large. Further, spatial complexity of local function approximation of the reinforcement learning domain grows exponentially with the reconstruction dimension. Parameterized dynamic systems alleviate both embedding length and state-space dimensionality concerns by reconstructing an approximate Markovian state-space via a compact, recurrent representation. Yet this representation extracts a cost; modeling reinforcement learning domains via adaptive, parameterized dynamic systems is characterized by instability, slow-convergence, and high computational or spatial training complexity. The objectives of this research are to demonstrate a stable, convergent, accurate, and scalable model of non-Markovian reinforcement learning domains. These objectives are fulfilled via fixed point analysis of the dynamics underlying the reinforcement learning domain and the Echo State Network, a class of parameterized dynamic system. Understanding models of non-Markovian reinforcement learning domains requires understanding the interactions between learning domains and their models. Fixed point analysis of the Mountain Car Problem reinforcement learning domain, for both local and nonlocal function approximations, suggests a close relationship between the locality of the approximation and the number and severity of bifurcations of the fixed point structure. This research suggests the likely cause of this relationship: reinforcement learning domains exist within a dynamic feature space in which trajectories are analogous to states. The fixed point structure maps dynamic space onto state-space. This explanation suggests two testable hypotheses. Reinforcement learning is sensitive to state-space locality because states cluster as trajectories in time rather than space. Second, models using trajectory-based features should exhibit good modeling performance and few changes in fixed point structure. Analysis of performance of lookup table, feedforward neural network, and Echo State Network (ESN) on the Mountain Car Problem reinforcement learning domain confirm these hypotheses. The ESN is a large, sparse, randomly-generated, unadapted recurrent neural network, which adapts a linear projection of the target domain onto the hidden layer. ESN modeling results on reinforcement learning domains show it achieves performance comparable to lookup table and neural network architectures on the Mountain Car Problem with minimal changes to fixed point structure. Also, the ESN achieves lookup table caliber performance when modeling Acrobot, a four-dimensional control problem, but is less successful modeling the lower dimensional Modified Mountain Car Problem. These performance discrepancies are attributed to the ESN’s excellent ability to represent complex short term dynamics, and its inability to consolidate long temporal dependencies into a static memory. Without memory consolidation, reinforcement learning domains exhibiting attractors with multiple dynamic scales are unlikely to be well-modeled via ESN. To mediate this problem, a simple ESN memory consolidation method is presented and tested for stationary dynamic systems. These results indicate the potential to improve modeling performance in reinforcement learning domains via memory consolidation
    corecore