54 research outputs found

    FBMC system: an insight into doubly dispersive channel impact

    Get PDF
    It has been claimed that filter bank multicarrier (FBMC) systems suffer from negligible performance loss caused by moderate dispersive channels in the absence of guard time protection between symbols. However, a theoretical and systematic explanation/analysis for the statement is missing in the literature to date. In this paper, based on one-tap minimum mean square error (MMSE) and zero-forcing (ZF) channel equalizations, the impact of doubly dispersive channel on the performance of FBMC systems is analyzed in terms of mean square error of received symbols. Based on this analytical framework, we prove that the circular convolution property between symbols and the corresponding channel coefficients in the frequency domain holds loosely with a set of inaccuracies. To facilitate analysis, we first model the FBMC system in a vector/matrix form and derive the estimated symbols as a sum of desired signal, noise, intersymbol interference (ISI), intercarrier interference (ICI), interblock interference (IBI), and estimation bias in the MMSE equalizer. Those terms are derived one-by-one and expressed as a function of channel parameters. The numerical results reveal that under harsh channel conditions, e.g., with large Doppler spread or channel delay spread, the FBMC system performance may be severely deteriorated and error floor will occur

    Doctor of Philosophy

    Get PDF
    dissertationThe demand for high speed communication has been increasing in the past two decades. Multicarrier communication technology has been suggested to address this demand. Orthogonal frequency-division multiplexing (OFDM) is the most widely used multicarrier technique. However, OFDM has a number of disadvantages in time-varying channels, multiple access, and cognitive radios. On the other hand, filterbank multicarrier (FBMC) communication has been suggested as an alternative to OFDM that can overcome the disadvantages of OFDM. In this dissertation, we investigate the application of filtered multitone (FMT), a subset of FBMC modulation methods, to slow fading and fast fading channels. We investigate the FMT transmitter and receiver in continuous and discrete time domains. An efficient implementation of FMT systems is derived and the conditions for perfect reconstruction in an FBMC communication system are presented. We derive equations for FMT in slow fading channels that allow evaluation of FMT when applied to mobile wireless communication systems. We consider using fractionally spaced per tone channel equalizers with different number of taps. The numerical results are presented to investigate the performance of these equalizers. The numerical results show that single-tap equalizers suffice for typical wireless channels. The equalizer design study is advanced by introducing adaptive equalizers which use channel estimation. We derive equations for a minimum mean square error (MMSE) channel estimator and improve the channel estimation by considering the finite duration of channel impulse response. The results of optimum equalizers (when channel is known perfectly) are compared with those of the adaptive equalizers, and it is found that a loss of 1 dB or less incurs. We also introduce a new form of FMT which is specially designed to handle doubly dispersive channels. This method is called FMT-dd (FMT for doubly dispersive channels). The proposed FMT-dd is applied to two common methods of data symbol orientation in the time-frequency space grid; namely, rectangular and hexagonal lattices. The performance of these methods along with OFDM and the conventional FMT are compared and a significant improvement in performance is observed. The FMT-dd design is applied to real-world underwater acoustic (UWA) communication channels. The experimental results from an at-sea experiment (ACOMM10) show that this new design provides a significant gain over OFDM. The feasibility of implementing a MIMO system for multicarrier UWA communication channels is studied through computer simulations. Our study emphasizes the bandwidth efficiency of multicarrier MIMO communications .We show that the value of MIMO to UWA communication is very limited

    Efficient DCT-MCM Detection for Single and Multi-Antenna Wireless Systems

    Get PDF
    The discrete cosine transform (DCT) based multicarrier modulation (MCM) system is regarded as one of the promising transmission techniques for future wireless communications. By employing cosine basis as orthogonal functions for multiplexing each real-valued symbol with symbol period of T, it is able to maintain the subcarrier orthogonality while reducing frequency spacing to 1/(2T) Hz, which is only half of that compared to discrete Fourier transform (DFT) based multicarrier systems. In this paper, following one of the effective transmission models by which zeros are inserted as guard sequence and the DCT operation at the receiver is replaced by DFT of double length, we reformulate and evaluate three classic detection methods by appropriately processing the post-DFT signals both for single antenna and multiple-input multiple-output (MIMO) DCT-MCM systems. In all cases, we show that with our reformulated detection approaches, DCT-MCM schemes can outperform, in terms of error-rate, conventional OFDM-based systems

    Single- versus Multi-Carrier Terahertz-Band Communications: A Comparative Study

    Full text link
    The prospects of utilizing single-carrier (SC) and multi-carrier (MC) waveforms in future terahertz (THz)-band communication systems remain unresolved. On the one hand, the limited multi-path components at high frequencies result in frequency-flat channels that favor low-complexity wideband SC systems. On the other hand, frequency-dependent molecular absorption and transceiver characteristics and the existence of multi-path components in indoor sub-THz systems can still result in frequency-selective channels, favoring off-the-shelf MC schemes such as orthogonal frequency-division multiplexing (OFDM). Variations of SC/MC designs result in different THz spectrum utilization, but spectral efficiency is not the primary concern with substantial available bandwidths; baseband complexity, power efficiency, and hardware impairment constraints are predominant. This paper presents a comprehensive study of SC/MC modulations for THz communications, utilizing an accurate wideband THz channel model and highlighting the various performance and complexity trade-offs of the candidate schemes. Simulations demonstrate that discrete-Fourier-transform spread orthogonal time-frequency space (DFT-s-OTFS) achieves a lower peak-to-average power ratio (PAPR) than OFDM and OTFS and enhances immunity to THz impairments and Doppler spreads, but at an increased complexity cost. Moreover, DFT-s-OFDM is a promising candidate that increases robustness to THz impairments and phase noise (PHN) at a low PAPR and overall complexity.Comment: 18 pages, 12 figures, journa

    Performance Evaluation of Filterbank Multicarrier Systems in an Underwater Acoustic Channel

    Get PDF
    • …
    corecore