91,013 research outputs found

    Analysis of the computational complexity of solving random satisfiability problems using branch and bound search algorithms

    Full text link
    The computational complexity of solving random 3-Satisfiability (3-SAT) problems is investigated. 3-SAT is a representative example of hard computational tasks; it consists in knowing whether a set of alpha N randomly drawn logical constraints involving N Boolean variables can be satisfied altogether or not. Widely used solving procedures, as the Davis-Putnam-Loveland-Logeman (DPLL) algorithm, perform a systematic search for a solution, through a sequence of trials and errors represented by a search tree. In the present study, we identify, using theory and numerical experiments, easy (size of the search tree scaling polynomially with N) and hard (exponential scaling) regimes as a function of the ratio alpha of constraints per variable. The typical complexity is explicitly calculated in the different regimes, in very good agreement with numerical simulations. Our theoretical approach is based on the analysis of the growth of the branches in the search tree under the operation of DPLL. On each branch, the initial 3-SAT problem is dynamically turned into a more generic 2+p-SAT problem, where p and 1-p are the fractions of constraints involving three and two variables respectively. The growth of each branch is monitored by the dynamical evolution of alpha and p and is represented by a trajectory in the static phase diagram of the random 2+p-SAT problem. Depending on whether or not the trajectories cross the boundary between phases, single branches or full trees are generated by DPLL, resulting in easy or hard resolutions.Comment: 37 RevTeX pages, 15 figures; submitted to Phys.Rev.

    Quiet Planting in the Locked Constraint Satisfaction Problems

    Full text link
    We study the planted ensemble of locked constraint satisfaction problems. We describe the connection between the random and planted ensembles. The use of the cavity method is combined with arguments from reconstruction on trees and first and second moment considerations; in particular the connection with the reconstruction on trees appears to be crucial. Our main result is the location of the hard region in the planted ensemble. In a part of that hard region instances have with high probability a single satisfying assignment.Comment: 21 pages, revised versio

    Eigenlevel statistics of the quantum adiabatic algorithm

    Full text link
    We study the eigenlevel spectrum of quantum adiabatic algorithm for 3-satisfiability problem, focusing on single-solution instances. The properties of the ground state and the associated gap, crucial for determining the running time of the algorithm, are found to be far from the predictions of random matrix theory. The distribution of gaps between the ground and the first excited state shows an abundance of small gaps. Eigenstates from the central part of the spectrum are, on the other hand, well described by random matrix theory.Comment: 8 pages, 10 ps figure

    Heuristic average-case analysis of the backtrack resolution of random 3-Satisfiability instances

    Full text link
    An analysis of the average-case complexity of solving random 3-Satisfiability (SAT) instances with backtrack algorithms is presented. We first interpret previous rigorous works in a unifying framework based on the statistical physics notions of dynamical trajectories, phase diagram and growth process. It is argued that, under the action of the Davis--Putnam--Loveland--Logemann (DPLL) algorithm, 3-SAT instances are turned into 2+p-SAT instances whose characteristic parameters (ratio alpha of clauses per variable, fraction p of 3-clauses) can be followed during the operation, and define resolution trajectories. Depending on the location of trajectories in the phase diagram of the 2+p-SAT model, easy (polynomial) or hard (exponential) resolutions are generated. Three regimes are identified, depending on the ratio alpha of the 3-SAT instance to be solved. Lower sat phase: for small ratios, DPLL almost surely finds a solution in a time growing linearly with the number N of variables. Upper sat phase: for intermediate ratios, instances are almost surely satisfiable but finding a solution requires exponential time (2 ^ (N omega) with omega>0) with high probability. Unsat phase: for large ratios, there is almost always no solution and proofs of refutation are exponential. An analysis of the growth of the search tree in both upper sat and unsat regimes is presented, and allows us to estimate omega as a function of alpha. This analysis is based on an exact relationship between the average size of the search tree and the powers of the evolution operator encoding the elementary steps of the search heuristic.Comment: to appear in Theoretical Computer Scienc
    • …
    corecore