624 research outputs found

    Does Haze Removal Help CNN-based Image Classification?

    Full text link
    Hazy images are common in real scenarios and many dehazing methods have been developed to automatically remove the haze from images. Typically, the goal of image dehazing is to produce clearer images from which human vision can better identify the object and structural details present in the images. When the ground-truth haze-free image is available for a hazy image, quantitative evaluation of image dehazing is usually based on objective metrics, such as Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity (SSIM). However, in many applications, large-scale images are collected not for visual examination by human. Instead, they are used for many high-level vision tasks, such as automatic classification, recognition and categorization. One fundamental problem here is whether various dehazing methods can produce clearer images that can help improve the performance of the high-level tasks. In this paper, we empirically study this problem in the important task of image classification by using both synthetic and real hazy image datasets. From the experimental results, we find that the existing image-dehazing methods cannot improve much the image-classification performance and sometimes even reduce the image-classification performance

    Physics-Based Generative Adversarial Models for Image Restoration and Beyond

    Full text link
    We present an algorithm to directly solve numerous image restoration problems (e.g., image deblurring, image dehazing, image deraining, etc.). These problems are highly ill-posed, and the common assumptions for existing methods are usually based on heuristic image priors. In this paper, we find that these problems can be solved by generative models with adversarial learning. However, the basic formulation of generative adversarial networks (GANs) does not generate realistic images, and some structures of the estimated images are usually not preserved well. Motivated by an interesting observation that the estimated results should be consistent with the observed inputs under the physics models, we propose a physics model constrained learning algorithm so that it can guide the estimation of the specific task in the conventional GAN framework. The proposed algorithm is trained in an end-to-end fashion and can be applied to a variety of image restoration and related low-level vision problems. Extensive experiments demonstrate that our method performs favorably against the state-of-the-art algorithms.Comment: IEEE TPAM

    Gated Fusion Network for Single Image Dehazing

    Full text link
    In this paper, we propose an efficient algorithm to directly restore a clear image from a hazy input. The proposed algorithm hinges on an end-to-end trainable neural network that consists of an encoder and a decoder. The encoder is exploited to capture the context of the derived input images, while the decoder is employed to estimate the contribution of each input to the final dehazed result using the learned representations attributed to the encoder. The constructed network adopts a novel fusion-based strategy which derives three inputs from an original hazy image by applying White Balance (WB), Contrast Enhancing (CE), and Gamma Correction (GC). We compute pixel-wise confidence maps based on the appearance differences between these different inputs to blend the information of the derived inputs and preserve the regions with pleasant visibility. The final dehazed image is yielded by gating the important features of the derived inputs. To train the network, we introduce a multi-scale approach such that the halo artifacts can be avoided. Extensive experimental results on both synthetic and real-world images demonstrate that the proposed algorithm performs favorably against the state-of-the-art algorithms

    Learning Dual Convolutional Neural Networks for Low-Level Vision

    Full text link
    In this paper, we propose a general dual convolutional neural network (DualCNN) for low-level vision problems, e.g., super-resolution, edge-preserving filtering, deraining and dehazing. These problems usually involve the estimation of two components of the target signals: structures and details. Motivated by this, our proposed DualCNN consists of two parallel branches, which respectively recovers the structures and details in an end-to-end manner. The recovered structures and details can generate the target signals according to the formation model for each particular application. The DualCNN is a flexible framework for low-level vision tasks and can be easily incorporated into existing CNNs. Experimental results show that the DualCNN can be effectively applied to numerous low-level vision tasks with favorable performance against the state-of-the-art methods.Comment: CVPR 201

    The Effectiveness of Instance Normalization: a Strong Baseline for Single Image Dehazing

    Full text link
    We propose a novel deep neural network architecture for the challenging problem of single image dehazing, which aims to recover the clear image from a degraded hazy image. Instead of relying on hand-crafted image priors or explicitly estimating the components of the widely used atmospheric scattering model, our end-to-end system directly generates the clear image from an input hazy image. The proposed network has an encoder-decoder architecture with skip connections and instance normalization. We adopt the convolutional layers of the pre-trained VGG network as encoder to exploit the representation power of deep features, and demonstrate the effectiveness of instance normalization for image dehazing. Our simple yet effective network outperforms the state-of-the-art methods by a large margin on the benchmark datasets

    End-to-End United Video Dehazing and Detection

    Full text link
    The recent development of CNN-based image dehazing has revealed the effectiveness of end-to-end modeling. However, extending the idea to end-to-end video dehazing has not been explored yet. In this paper, we propose an End-to-End Video Dehazing Network (EVD-Net), to exploit the temporal consistency between consecutive video frames. A thorough study has been conducted over a number of structure options, to identify the best temporal fusion strategy. Furthermore, we build an End-to-End United Video Dehazing and Detection Network(EVDD-Net), which concatenates and jointly trains EVD-Net with a video object detection model. The resulting augmented end-to-end pipeline has demonstrated much more stable and accurate detection results in hazy video

    Generic Model-Agnostic Convolutional Neural Network for Single Image Dehazing

    Full text link
    Haze and smog are among the most common environmental factors impacting image quality and, therefore, image analysis. This paper proposes an end-to-end generative method for image dehazing. It is based on designing a fully convolutional neural network to recognize haze structures in input images and restore clear, haze-free images. The proposed method is agnostic in the sense that it does not explore the atmosphere scattering model. Somewhat surprisingly, it achieves superior performance relative to all existing state-of-the-art methods for image dehazing even on SOTS outdoor images, which are synthesized using the atmosphere scattering model. Project detail and code can be found here: https://github.com/Seanforfun/GMAN_Net_Haze_Remova

    Joint Transmission Map Estimation and Dehazing using Deep Networks

    Full text link
    Single image haze removal is an extremely challenging problem due to its inherent ill-posed nature. Several prior-based and learning-based methods have been proposed in the literature to solve this problem and they have achieved superior results. However, most of the existing methods assume constant atmospheric light model and tend to follow a two-step procedure involving prior-based methods for estimating transmission map followed by calculation of dehazed image using the closed form solution. In this paper, we relax the constant atmospheric light assumption and propose a novel unified single image dehazing network that jointly estimates the transmission map and performs dehazing. In other words, our new approach provides an end-to-end learning framework, where the inherent transmission map and dehazed result are learned directly from the loss function. Extensive experiments on synthetic and real datasets with challenging hazy images demonstrate that the proposed method achieves significant improvements over the state-of-the-art methods.Comment: This paper has been accepted in IEEE-TCSV

    Fractional Multiscale Fusion-based De-hazing

    Full text link
    This report presents the results of a proposed multi-scale fusion-based single image de-hazing algorithm, which can also be used for underwater image enhancement. Furthermore, the algorithm was designed for very fast operation and minimal run-time. The proposed scheme is the faster than existing algorithms for both de-hazing and underwater image enhancement and amenable to digital hardware implementation. Results indicate mostly consistent and good results for both categories of images when compared with other algorithms from the literature.Comment: 23 pages, 13 figures, 2 table

    A Cascaded Convolutional Neural Network for Single Image Dehazing

    Full text link
    Images captured under outdoor scenes usually suffer from low contrast and limited visibility due to suspended atmospheric particles, which directly affects the quality of photos. Despite numerous image dehazing methods have been proposed, effective hazy image restoration remains a challenging problem. Existing learning-based methods usually predict the medium transmission by Convolutional Neural Networks (CNNs), but ignore the key global atmospheric light. Different from previous learning-based methods, we propose a flexible cascaded CNN for single hazy image restoration, which considers the medium transmission and global atmospheric light jointly by two task-driven subnetworks. Specifically, the medium transmission estimation subnetwork is inspired by the densely connected CNN while the global atmospheric light estimation subnetwork is a light-weight CNN. Besides, these two subnetworks are cascaded by sharing the common features. Finally, with the estimated model parameters, the haze-free image is obtained by the atmospheric scattering model inversion, which achieves more accurate and effective restoration performance. Qualitatively and quantitatively experimental results on the synthetic and real-world hazy images demonstrate that the proposed method effectively removes haze from such images, and outperforms several state-of-the-art dehazing methods.Comment: This manuscript is accepted by IEEE ACCES
    corecore