2 research outputs found

    Single-handed interaction techniques for multiple pressure-sensitive strips

    No full text
    We present a set of interaction techniques that make novel use of a small pressure-sensitive pad to allow one-handed direct control of a large number of parameters. The surface of the pressure-sensitive pad is logically divided into four linear strips which simulate traditional interaction metaphors and the functions of which may be modified dynamically under software control. No homing of the hand or fingers in needed once the fingers are placed above their corresponding strips. We show how the number of strips on the pad can be virtually extended from four to fourteen by detecting contact pressure differences and dual-finger motions. Due to the compact size of the device and the method of interaction, which does not rely on on-screen widgets or the 2D navigation of a cursor, the versatile input system may be used in applications, where it is advantageous to minimize the amount of visual feedback required for interaction. Author Keywords Single handed input device, touch/pressure-sensitive interaction, cursorless user interfaces, wearable computing, virtual- and augmented reality. ACM Classification Keywords H.5.2. Input devices and strategies

    Improving expressivity in desktop interactions with a pressure-augmented mouse

    Get PDF
    Desktop-based Windows, Icons, Menus and Pointers (WIMP) interfaces have changed very little in the last 30 years, and are still limited by a lack of powerful and expressive input devices and interactions. In order to make desktop interactions more expressive and controllable, expressive input mechanisms like pressure input must be made available to desktop users. One way to provide pressure input to these users is through a pressure-augmented computer mouse; however, before pressure-augmented mice can be developed, design information must be provided to mouse developers. The problem we address in this thesis is that there is a lack of ergonomics and performance information for the design of pressure-augmented mice. Our solution was to provide empirical performance and ergonomics information for pressure-augmented mice by performing five experiments. With the results of our experiments we were able to identify the optimal design parameters for pressure-augmented mice and provide a set of recommendations for future pressure-augmented mouse designs
    corecore