98,565 research outputs found
Spiers Memorial Lecture: Interplay of theory and computation in chemistry—examples from on-water organic catalysis, enzyme catalysis, and single-molecule fluctuations
In this lecture, several examples are considered that illustrate the interplay of experiment, theory, and computations. The examples include on-water catalysis of organic reactions, enzymatic catalysis, single molecule fluctuations, and some much earlier work on electron transfer and atom or group transfer reactions. Computations have made a major impact on our understanding and in the comparisons with experiments. There are also major advantages of analytical theories that may capture in a single equation an entire field and relate experiments of one type to those of another. Such a theory has a generic quality. These topics are explored in the present lecture
Substitutional Si impurities in monolayer hexagonal boron nitride
We report the first observation of substitutional silicon atoms in
single-layer hexagonal boron nitride (h-BN) using aberration corrected scanning
transmission electron microscopy (STEM). The medium angle annular dark field
(MAADF) images reveal silicon atoms exclusively filling boron vacancies. This
structure is stable enough under electron beam for repeated imaging. Density
functional theory (DFT) is used to study the energetics, structure and
properties of the experimentally observed structure. The formation energies of
all possible charge states of the different silicon substitutions
(Si, Si and Si) are calculated. The
results reveal Si as the most stable substitutional
configuration. In this case, silicon atom elevates by 0.66{\AA} out of the
lattice with unoccupied defect levels in the electronic band gap above the
Fermi level. The formation energy shows a slightly exothermic process. Our
results unequivocally show that heteroatoms can be incorporated into the h-BN
lattice opening way for applications ranging from single-atom catalysis to
atomically precise magnetic structures
Extension of the single-event microkinetic model to alkyl substituted monoaromatics hydrogenation on a Pt catalyst
The Single-Event Micro Kinetic (SEMK) methodology, which had been successfully applied to benzene hydrogenation on a Pt catalyst, has now been extended toward substituted monoaromatics, that is, toluene and o-xylene. The single event concept Combined with thermodynamic constraints. allowed to significantly reduce the number of adjustable parameters. In addition to the number of unsaturated nearest neighbor carbon atoms, H-atom addition rate and equilibrium coefficients were assumed to depend on the carbon atom type, that is, secondary or tertiary. This leads to three additional :reaction families compared to benzene hydrogenation: Gas. phase toluene and o-xylene hydrogenation experiments were performed on 0.5 wt % Pt/ZSM-22 in a temperature range from 423 to 498 K, a total pressure range from 1 to 3 MPa, H-2 inlet partial pressures between 100 and 600 kPa and aromatic inlet partial pressures between 10 and 60 kPa. A simultaneous regression of the :SEMK,Model to an experimental data set consisting of 39 toluene and 37 o-xylene hydrogenation experiments resulted in activation energies of H additions to tertiary:carbon:atoms:that are 10.5 kJ mol(-1) higher than to secondary carbon atoms. This can be related to the steric hindrance experienced during H addition to a carbon atom bearing a substituent. The presence of a substituent on the aromatic king was found not to affect the Chemisorption enthalpies. The reaction path analysis has been carried out via differential contribution analysis and identified that the hydrogenation first, occurs at secondary carbon atoms, prior to the hydrogenation of the tertiary carbon atoms in the hydrogenation Sequence. This is in line with the distribution of hydrocarbon species on the catalyst surfac
Oxygen molecule dissociation on carbon nanostructures with different types of nitrogen doping
Energy barrier of oxygen molecule dissociation on carbon nanotube or graphene
with different types of nitrogen doping is investigated using density
functional theory. The results show that the energy barriers can be reduced
efficiently by all types of nitrogen doping in both carbon nanotubes and
graphene. Graphite-like nitrogen and Stone-Wales defect nitrogen decrease the
energy barrier more efficiently than pyridine-like nitrogen, and a dissociation
barrier lower than 0.2 eV can be obtained. Higher nitrogen concentration
reduces the energy barrier much more efficiently for graphite-like nitrogen.
These observations are closely related to partial occupation of {\pi}* orbitals
and change of work functions. Our results thus provide useful insights into the
oxygen reduction reactions.Comment: Accepted by Nanoscal
- …
