3 research outputs found

    Data Analytics for Google Trend Search Result of Illness Symptoms

    Get PDF
    The outbreak of COVID-19 has escalated from March 2020. Since then, people from all over the world are curiously searching different types of illness symptoms including corona virus. Before the outbreak, people were also searching different types of symptoms at different times. Both diseases share same symptoms, but in the flu season. If certain types of symptoms are visible at summer season, then these symptoms are for corona virus. The main purpose of our study is to find out this discriminative information from these search result. We will discuss some mathematical concepts and then develop an algorithm based on those formulas and then apply this algorithm to those datasets to find out those discriminative data

    LOCA: LOcal Conformal Autoencoder for standardized data coordinates

    Full text link
    We propose a deep-learning based method for obtaining standardized data coordinates from scientific measurements.Data observations are modeled as samples from an unknown, non-linear deformation of an underlying Riemannian manifold, which is parametrized by a few normalized latent variables. By leveraging a repeated measurement sampling strategy, we present a method for learning an embedding in Rd\mathbb{R}^d that is isometric to the latent variables of the manifold. These data coordinates, being invariant under smooth changes of variables, enable matching between different instrumental observations of the same phenomenon. Our embedding is obtained using a LOcal Conformal Autoencoder (LOCA), an algorithm that constructs an embedding to rectify deformations by using a local z-scoring procedure while preserving relevant geometric information. We demonstrate the isometric embedding properties of LOCA on various model settings and observe that it exhibits promising interpolation and extrapolation capabilities. Finally, we apply LOCA to single-site Wi-Fi localization data, and to 33-dimensional curved surface estimation based on a 22-dimensional projection

    CSI-fingerprinting Indoor Localization via Attention-Augmented Residual Convolutional Neural Network

    Full text link
    Deep learning has been widely adopted for channel state information (CSI)-fingerprinting indoor localization systems. These systems usually consist of two main parts, i.e., a positioning network that learns the mapping from high-dimensional CSI to physical locations and a tracking system that utilizes historical CSI to reduce the positioning error. This paper presents a new localization system with high accuracy and generality. On the one hand, the receptive field of the existing convolutional neural network (CNN)-based positioning networks is limited, restricting their performance as useful information in CSI is not explored thoroughly. As a solution, we propose a novel attention-augmented residual CNN to utilize the local information and global context in CSI exhaustively. On the other hand, considering the generality of a tracking system, we decouple the tracking system from the CSI environments so that one tracking system for all environments becomes possible. Specifically, we remodel the tracking problem as a denoising task and solve it with deep trajectory prior. Furthermore, we investigate how the precision difference of inertial measurement units will adversely affect the tracking performance and adopt plug-and-play to solve the precision difference problem. Experiments show the superiority of our methods over existing approaches in performance and generality improvement.Comment: 32 pages, Added references in section 2,3; Added explanations for some academic terms; Corrected typos; Added experiments in section 5, previous results unchanged; is under review for possible publicatio
    corecore