4,851 research outputs found

    1st International round robin on EL imaging: automated camera calibration and image normalisation

    Get PDF
    Results from the first international Round Robin on electroluminescence (EL) imaging of PV devices are presented. 17 Laboratories across Europe, Asia and the US measured EL images of ten commercially available modules and five single-cell modules. This work presents a novel automated camera calibration and image scaling routine. Its performance is quantified through comparing intensity deviation of corrected images and their cell average. While manual calibration includes additional measurement of lens distortion and flat field, the automated calibration extracts camera calibration parameters (here: lens distortion, and vignetting) exclusively from EL images. Although it is shown that the presented automated calibration outperforms the manual one, the method proposed in this work uses both manual and automated calibration. 501 images from 24 cameras are corrected. Intensity deviation of cell averages of every measured device decreased from 10.3 % (results submitted by contributing labs) to 2.8 % (proposed method), For three images the image correction produced insufficient results and vignetting correction failed for one camera, known of having a non-linear camera sensor. Surprisingly, largest image quality improvements are achieved by spatially precise image alignment of the same device and not by correcting for vignetting and lens distortion. This is due to overall small lens distortion and the circumstance that, although vignetting caused intensity reduction of more than 50%, PV devices are generally positioned in the image centre in which vignetting distortion is lowest

    The Digitized Second Palomar Observatory Sky Survey (DPOSS) II: Photometric Calibration

    Get PDF
    We present the photometric calibration technique for the Digitized Second Palomar Observatory Sky Survey (DPOSS), used to create seamless catalogs of calibrated objects over large sky areas. After applying a correction for telescope vignetting, the extensive plate overlap regions are used to transform sets of plates onto a common instrumental photometric system. Photometric transformations to the Gunn gri system for each plate, for stars and galaxies, are derived using these contiguous stitched areas and an extensive CCD imaging library obtained for this purpose. We discuss the resulting photometric accuracy, survey depth, and possible systematic errors.Comment: 25 pages, 13 figures. Accepted to AJ. Some figures shrunk or missing to limit file size; the full paper is available at http://www.sdss.jhu.edu/~rrg/science/papers/photometrypaper.ps.g

    In-orbit Vignetting Calibrations of XMM-Newton Telescopes

    Full text link
    We describe measurements of the mirror vignetting in the XMM-Newton Observatory made in-orbit, using observations of SNR G21.5-09 and SNR 3C58 with the EPIC imaging cameras. The instrument features that complicate these measurements are briefly described. We show the spatial and energy dependences of measured vignetting, outlining assumptions made in deriving the eventual agreement between simulation and measurement. Alternate methods to confirm these are described, including an assessment of source elongation with off-axis angle, the surface brightness distribution of the diffuse X-ray background, and the consistency of Coma cluster emission at different position angles. A synthesis of these measurements leads to a change in the XMM calibration data base, for the optical axis of two of the three telescopes, by in excess of 1 arcminute. This has a small but measureable effect on the assumed spectral responses of the cameras for on-axis targets.Comment: Accepted by Experimental Astronomy. 26 pages, 18 figure
    • …
    corecore