13 research outputs found

    Theory for the Accuracy of Microcomb Photonic Microwave Transversal Signal Processors

    Full text link
    Photonic RF transversal signal processors, which are equivalent to reconfigurable electrical digital signal processors but implemented with photonic technologies, have been widely used for modern high-speed information processing. With the capability of generating large numbers of wavelength channels with compact micro-resonators, optical microcombs bring new opportunities for realizing photonic RF transversal signal processors that have greatly reduced size, power consumption, and complexity. Recently, a variety of signal processing functions have been demonstrated using microcomb-based photonic RF transversal signal processors. Here, we provide detailed analysis for quantifying the processing accuracy of microcomb-based photonic RF transversal signal processors. First, we investigate the theoretical limitations of the processing accuracy determined by tap number, signal bandwidth, and pulse waveform. Next, we discuss the practical error sources from different components of the signal processors. Finally, we analyze the contributions of the theoretical limitations and the experimental factors to the overall processing inaccuracy both theoretically and experimentally. These results provide a useful guide for designing microcomb-based photonic RF transversal signal processors to optimize their accuracy.Comment: 17 pages, 12 figures, 103 reference

    Photo-thermal tuning of graphene oxide coated integrated optical waveguides

    Full text link
    We experimentally investigate power sensitive photothermal tuning (PTT) of two dimensional (2D) graphene oxide (GO) films coated on integrated optical waveguides. We measure the light power thresholds for reversible and permanent GO reduction in silicon nitride (SiN) waveguides integrated with 1 and 2 layers of GO. Raman spectra at different positions of a hybrid waveguide with permanently reduced GO are characterized, verifying the inhomogeneous GO reduction along the direction of light propagation through the waveguide. The differences between the PTT induced by a continuous wave laser and a pulsed laser are also compared, confirming that the PTT mainly depend on the average input power. These results reveal interesting features for 2D GO films coated on integrated optical waveguides, which are of fundamental importance for the control and engineering of GO properties in hybrid integrated photonic devices.Comment: 12 pages, 6 figures, 99 reference
    corecore