22,782 research outputs found

    Pyramid Attention Networks for Image Restoration

    Full text link
    Self-similarity refers to the image prior widely used in image restoration algorithms that small but similar patterns tend to occur at different locations and scales. However, recent advanced deep convolutional neural network based methods for image restoration do not take full advantage of self-similarities by relying on self-attention neural modules that only process information at the same scale. To solve this problem, we present a novel Pyramid Attention module for image restoration, which captures long-range feature correspondences from a multi-scale feature pyramid. Inspired by the fact that corruptions, such as noise or compression artifacts, drop drastically at coarser image scales, our attention module is designed to be able to borrow clean signals from their "clean" correspondences at the coarser levels. The proposed pyramid attention module is a generic building block that can be flexibly integrated into various neural architectures. Its effectiveness is validated through extensive experiments on multiple image restoration tasks: image denoising, demosaicing, compression artifact reduction, and super resolution. Without any bells and whistles, our PANet (pyramid attention module with simple network backbones) can produce state-of-the-art results with superior accuracy and visual quality. Our code will be available at https://github.com/SHI-Labs/Pyramid-Attention-Network

    SCAN: Self-and-Collaborative Attention Network for Video Person Re-identification

    Full text link
    Video person re-identification attracts much attention in recent years. It aims to match image sequences of pedestrians from different camera views. Previous approaches usually improve this task from three aspects, including a) selecting more discriminative frames, b) generating more informative temporal representations, and c) developing more effective distance metrics. To address the above issues, we present a novel and practical deep architecture for video person re-identification termed Self-and-Collaborative Attention Network (SCAN). It has several appealing properties. First, SCAN adopts non-parametric attention mechanism to refine the intra-sequence and inter-sequence feature representation of videos, and outputs self-and-collaborative feature representation for each video, making the discriminative frames aligned between the probe and gallery sequences.Second, beyond existing models, a generalized pairwise similarity measurement is proposed to calculate the similarity feature representations of video pairs, enabling computing the matching scores by the binary classifier. Third, a dense clip segmentation strategy is also introduced to generate rich probe-gallery pairs to optimize the model. Extensive experiments demonstrate the effectiveness of SCAN, which outperforms the best-performing baselines on iLIDS-VID, PRID2011 and MARS dataset, respectively.Comment: 10 pages, 5 figure

    Generic 3D Convolutional Fusion for image restoration

    Full text link
    Also recently, exciting strides forward have been made in the area of image restoration, particularly for image denoising and single image super-resolution. Deep learning techniques contributed to this significantly. The top methods differ in their formulations and assumptions, so even if their average performance may be similar, some work better on certain image types and image regions than others. This complementarity motivated us to propose a novel 3D convolutional fusion (3DCF) method. Unlike other methods adapted to different tasks, our method uses the exact same convolutional network architecture to address both image denois- ing and single image super-resolution. As a result, our 3DCF method achieves substantial improvements (0.1dB-0.4dB PSNR) over the state-of-the-art methods that it fuses, and this on standard benchmarks for both tasks. At the same time, the method still is computationally efficient

    Ensemble Super-Resolution with A Reference Dataset

    Full text link
    By developing sophisticated image priors or designing deep(er) architectures, a variety of image Super-Resolution (SR) approaches have been proposed recently and achieved very promising performance. A natural question that arises is whether these methods can be reformulated into a unifying framework and whether this framework assists in SR reconstruction? In this paper, we present a simple but effective single image SR method based on ensemble learning, which can produce a better performance than that could be obtained from any of SR methods to be ensembled (or called component super-resolvers). Based on the assumption that better component super-resolver should have larger ensemble weight when performing SR reconstruction, we present a Maximum A Posteriori (MAP) estimation framework for the inference of optimal ensemble weights. Specially, we introduce a reference dataset, which is composed of High-Resolution (HR) and Low-Resolution (LR) image pairs, to measure the super-resolution abilities (prior knowledge) of different component super-resolvers. To obtain the optimal ensemble weights, we propose to incorporate the reconstruction constraint, which states that the degenerated HR image should be equal to the LR observation one, as well as the prior knowledge of ensemble weights into the MAP estimation framework. Moreover, the proposed optimization problem can be solved by an analytical solution. We study the performance of the proposed method by comparing with different competitive approaches, including four state-of-the-art non-deep learning based methods, four latest deep learning based methods and one ensemble learning based method, and prove its effectiveness and superiority on three public datasets.Comment: 14 pages, 11 figure

    Unified Single-Image and Video Super-Resolution via Denoising Algorithms

    Full text link
    Single Image Super-Resolution (SISR) aims to recover a high-resolution image from a given low-resolution version of it. Video Super Resolution (VSR) targets series of given images, aiming to fuse them to create a higher resolution outcome. Although SISR and VSR seem to have a lot in common, most SISR algorithms do not have a simple and direct extension to VSR. VSR is considered a more challenging inverse problem, mainly due to its reliance on a sub-pixel accurate motion-estimation, which has no parallel in SISR. Another complication is the dynamics of the video, often addressed by simply generating a single frame instead of a complete output sequence. In this work we suggest a simple and robust super-resolution framework that can be applied to single images and easily extended to video. Our work relies on the observation that denoising of images and videos is well-managed and very effectively treated by a variety of methods. We exploit the Plug-and-Play-Prior framework and the Regularization-by-Denoising (RED) approach that extends it, and show how to use such denoisers in order to handle the SISR and the VSR problems using a unified formulation and framework. This way, we benefit from the effectiveness and efficiency of existing image/video denoising algorithms, while solving much more challenging problems. More specifically, harnessing the VBM3D video denoiser, we obtain a strongly competitive motion-estimation free VSR algorithm, showing tendency to a high-quality output and fast processing

    Block-Matching Convolutional Neural Network for Image Denoising

    Full text link
    There are two main streams in up-to-date image denoising algorithms: non-local self similarity (NSS) prior based methods and convolutional neural network (CNN) based methods. The NSS based methods are favorable on images with regular and repetitive patterns while the CNN based methods perform better on irregular structures. In this paper, we propose a block-matching convolutional neural network (BMCNN) method that combines NSS prior and CNN. Initially, similar local patches in the input image are integrated into a 3D block. In order to prevent the noise from messing up the block matching, we first apply an existing denoising algorithm on the noisy image. The denoised image is employed as a pilot signal for the block matching, and then denoising function for the block is learned by a CNN structure. Experimental results show that the proposed BMCNN algorithm achieves state-of-the-art performance. In detail, BMCNN can restore both repetitive and irregular structures.Comment: 11 pages, 9 figure

    Chaining Identity Mapping Modules for Image Denoising

    Full text link
    We propose to learn a fully-convolutional network model that consists of a Chain of Identity Mapping Modules (CIMM) for image denoising. The CIMM structure possesses two distinctive features that are important for the noise removal task. Firstly, each residual unit employs identity mappings as the skip connections and receives pre-activated input in order to preserve the gradient magnitude propagated in both the forward and backward directions. Secondly, by utilizing dilated kernels for the convolution layers in the residual branch, in other words within an identity mapping module, each neuron in the last convolution layer can observe the full receptive field of the first layer. After being trained on the BSD400 dataset, the proposed network produces remarkably higher numerical accuracy and better visual image quality than the state-of-the-art when being evaluated on conventional benchmark images and the BSD68 dataset

    Weighted Low-rank Tensor Recovery for Hyperspectral Image Restoration

    Full text link
    Hyperspectral imaging, providing abundant spatial and spectral information simultaneously, has attracted a lot of interest in recent years. Unfortunately, due to the hardware limitations, the hyperspectral image (HSI) is vulnerable to various degradations, such noises (random noise, HSI denoising), blurs (Gaussian and uniform blur, HSI deblurring), and down-sampled (both spectral and spatial downsample, HSI super-resolution). Previous HSI restoration methods are designed for one specific task only. Besides, most of them start from the 1-D vector or 2-D matrix models and cannot fully exploit the structurally spectral-spatial correlation in 3-D HSI. To overcome these limitations, in this work, we propose a unified low-rank tensor recovery model for comprehensive HSI restoration tasks, in which non-local similarity between spectral-spatial cubic and spectral correlation are simultaneously captured by 3-order tensors. Further, to improve the capability and flexibility, we formulate it as a weighted low-rank tensor recovery (WLRTR) model by treating the singular values differently, and study its analytical solution. We also consider the exclusive stripe noise in HSI as the gross error by extending WLRTR to robust principal component analysis (WLRTR-RPCA). Extensive experiments demonstrate the proposed WLRTR models consistently outperform state-of-the-arts in typical low level vision HSI tasks, including denoising, destriping, deblurring and super-resolution.Comment: 22 pages, 22 figure

    Real Image Denoising with Feature Attention

    Full text link
    Deep convolutional neural networks perform better on images containing spatially invariant noise (synthetic noise); however, their performance is limited on real-noisy photographs and requires multiple stage network modeling. To advance the practicability of denoising algorithms, this paper proposes a novel single-stage blind real image denoising network (RIDNet) by employing a modular architecture. We use a residual on the residual structure to ease the flow of low-frequency information and apply feature attention to exploit the channel dependencies. Furthermore, the evaluation in terms of quantitative metrics and visual quality on three synthetic and four real noisy datasets against 19 state-of-the-art algorithms demonstrate the superiority of our RIDNet.Comment: Accepted in ICCV (Oral), 201

    Learning Hybrid Sparsity Prior for Image Restoration: Where Deep Learning Meets Sparse Coding

    Full text link
    State-of-the-art approaches toward image restoration can be classified into model-based and learning-based. The former - best represented by sparse coding techniques - strive to exploit intrinsic prior knowledge about the unknown high-resolution images; while the latter - popularized by recently developed deep learning techniques - leverage external image prior from some training dataset. It is natural to explore their middle ground and pursue a hybrid image prior capable of achieving the best in both worlds. In this paper, we propose a systematic approach of achieving this goal called Structured Analysis Sparse Coding (SASC). Specifically, a structured sparse prior is learned from extrinsic training data via a deep convolutional neural network (in a similar way to previous learning-based approaches); meantime another structured sparse prior is internally estimated from the input observation image (similar to previous model-based approaches). Two structured sparse priors will then be combined to produce a hybrid prior incorporating the knowledge from both domains. To manage the computational complexity, we have developed a novel framework of implementing hybrid structured sparse coding processes by deep convolutional neural networks. Experimental results show that the proposed hybrid image restoration method performs comparably with and often better than the current state-of-the-art techniques
    • …
    corecore